diff options
author | Adhemerval Zanella <azanella@linux.vnet.ibm.com> | 2012-05-14 16:49:42 -0300 |
---|---|---|
committer | Adhemerval Zanella <azanella@linux.vnet.ibm.com> | 2012-05-15 16:34:41 -0300 |
commit | 9ea01d93f7e08463febd23ad758e28973524f9be (patch) | |
tree | d4647059ad4bc6d3a13ece5c4ff06f925ad246fc /sysdeps/ieee754/dbl-64 | |
parent | 02a9193863a929b06ccebe394dcf5a30103eb1d3 (diff) | |
download | glibc-9ea01d93f7e08463febd23ad758e28973524f9be.tar.gz glibc-9ea01d93f7e08463febd23ad758e28973524f9be.tar.xz glibc-9ea01d93f7e08463febd23ad758e28973524f9be.zip |
Log2 and log10 for wordsize-64.
This patch also fixes indentation on default dbl-64 code.
Diffstat (limited to 'sysdeps/ieee754/dbl-64')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_log10.c | 59 | ||||
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_log2.c | 114 | ||||
-rw-r--r-- | sysdeps/ieee754/dbl-64/wordsize-64/e_log10.c | 86 | ||||
-rw-r--r-- | sysdeps/ieee754/dbl-64/wordsize-64/e_log2.c | 128 |
4 files changed, 305 insertions, 82 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_log10.c b/sysdeps/ieee754/dbl-64/e_log10.c index 9fce937085..ab5069e58e 100644 --- a/sysdeps/ieee754/dbl-64/e_log10.c +++ b/sysdeps/ieee754/dbl-64/e_log10.c @@ -46,39 +46,40 @@ #include <math.h> #include <math_private.h> -static const double -two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ -ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */ -log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ -log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ - -static const double zero = 0.0; +static const double two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */ +static const double ivln10 = 4.34294481903251816668e-01; /* 0x3FDBCB7B, 0x1526E50E */ +static const double log10_2hi = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */ +static const double log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ double -__ieee754_log10(double x) +__ieee754_log10 (double x) { - double y,z; - int32_t i,k,hx; - u_int32_t lx; + double y, z; + int32_t i, k, hx; + u_int32_t lx; - EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS (hx, lx, x); - k=0; - if (hx < 0x00100000) { /* x < 2**-1022 */ - if (__builtin_expect(((hx&0x7fffffff)|lx)==0, 0)) - return -two54/(x-x); /* log(+-0)=-inf */ - if (__builtin_expect(hx<0, 0)) - return (x-x)/(x-x); /* log(-#) = NaN */ - k -= 54; x *= two54; /* subnormal number, scale up x */ - GET_HIGH_WORD(hx,x); - } - if (__builtin_expect(hx >= 0x7ff00000, 0)) return x+x; - k += (hx>>20)-1023; - i = ((u_int32_t)k&0x80000000)>>31; - hx = (hx&0x000fffff)|((0x3ff-i)<<20); - y = (double)(k+i); - SET_HIGH_WORD(x,hx); - z = y*log10_2lo + ivln10*__ieee754_log(x); - return z+y*log10_2hi; + k = 0; + if (hx < 0x00100000) + { /* x < 2**-1022 */ + if (__builtin_expect (((hx & 0x7fffffff) | lx) == 0, 0)) + return -two54 / (x - x); /* log(+-0)=-inf */ + if (__builtin_expect (hx < 0, 0)) + return (x - x) / (x - x); /* log(-#) = NaN */ + k -= 54; + x *= two54; /* subnormal number, scale up x */ + GET_HIGH_WORD (hx, x); + } + if (__builtin_expect (hx >= 0x7ff00000, 0)) + return x + x; + k += (hx >> 20) - 1023; + i = ((u_int32_t) k & 0x80000000) >> 31; + hx = (hx & 0x000fffff) | ((0x3ff - i) << 20); + y = (double) (k + i); + SET_HIGH_WORD (x, hx); + z = y * log10_2lo + ivln10 * __ieee754_log (x); + return z + y * log10_2hi; } + strong_alias (__ieee754_log10, __log10_finite) diff --git a/sysdeps/ieee754/dbl-64/e_log2.c b/sysdeps/ieee754/dbl-64/e_log2.c index 6891ee2389..4d5cab0ed3 100644 --- a/sysdeps/ieee754/dbl-64/e_log2.c +++ b/sysdeps/ieee754/dbl-64/e_log2.c @@ -57,64 +57,72 @@ #include <math.h> #include <math_private.h> -static const double -ln2 = 0.69314718055994530942, -two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ -Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ -Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ -Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ -Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ -Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ -Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ -Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ +static const double ln2 = 0.69314718055994530942; +static const double two54 = 1.80143985094819840000e+16; /* 43500000 00000000 */ +static const double Lg1 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ +static const double Lg2 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ +static const double Lg3 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ +static const double Lg4 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ +static const double Lg5 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ +static const double Lg6 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ +static const double Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ -static const double zero = 0.0; +static const double zero = 0.0; double -__ieee754_log2(double x) +__ieee754_log2 (double x) { - double hfsq,f,s,z,R,w,t1,t2,dk; - int32_t k,hx,i,j; - u_int32_t lx; + double hfsq, f, s, z, R, w, t1, t2, dk; + int32_t k, hx, i, j; + u_int32_t lx; - EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS (hx, lx, x); - k=0; - if (hx < 0x00100000) { /* x < 2**-1022 */ - if (__builtin_expect(((hx&0x7fffffff)|lx)==0, 0)) - return -two54/(x-x); /* log(+-0)=-inf */ - if (__builtin_expect(hx<0, 0)) - return (x-x)/(x-x); /* log(-#) = NaN */ - k -= 54; x *= two54; /* subnormal number, scale up x */ - GET_HIGH_WORD(hx,x); - } - if (__builtin_expect(hx >= 0x7ff00000, 0)) return x+x; - k += (hx>>20)-1023; - hx &= 0x000fffff; - i = (hx+0x95f64)&0x100000; - SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ - k += (i>>20); - dk = (double) k; - f = x-1.0; - if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ - if(f==zero) return dk; - R = f*f*(0.5-0.33333333333333333*f); - return dk-(R-f)/ln2; - } - s = f/(2.0+f); - z = s*s; - i = hx-0x6147a; - w = z*z; - j = 0x6b851-hx; - t1= w*(Lg2+w*(Lg4+w*Lg6)); - t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); - i |= j; - R = t2+t1; - if(i>0) { - hfsq=0.5*f*f; - return dk-((hfsq-(s*(hfsq+R)))-f)/ln2; - } else { - return dk-((s*(f-R))-f)/ln2; - } + k = 0; + if (hx < 0x00100000) + { /* x < 2**-1022 */ + if (__builtin_expect (((hx & 0x7fffffff) | lx) == 0, 0)) + return -two54 / (x - x); /* log(+-0)=-inf */ + if (__builtin_expect (hx < 0, 0)) + return (x - x) / (x - x); /* log(-#) = NaN */ + k -= 54; + x *= two54; /* subnormal number, scale up x */ + GET_HIGH_WORD (hx, x); + } + if (__builtin_expect (hx >= 0x7ff00000, 0)) + return x + x; + k += (hx >> 20) - 1023; + hx &= 0x000fffff; + i = (hx + 0x95f64) & 0x100000; + SET_HIGH_WORD (x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */ + k += (i >> 20); + dk = (double) k; + f = x - 1.0; + if ((0x000fffff & (2 + hx)) < 3) + { /* |f| < 2**-20 */ + if (f == zero) + return dk; + R = f * f * (0.5 - 0.33333333333333333 * f); + return dk - (R - f) / ln2; + } + s = f / (2.0 + f); + z = s * s; + i = hx - 0x6147a; + w = z * z; + j = 0x6b851 - hx; + t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); + t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); + i |= j; + R = t2 + t1; + if (i > 0) + { + hfsq = 0.5 * f * f; + return dk - ((hfsq - (s * (hfsq + R))) - f) / ln2; + } + else + { + return dk - ((s * (f - R)) - f) / ln2; + } } + strong_alias (__ieee754_log2, __log2_finite) diff --git a/sysdeps/ieee754/dbl-64/wordsize-64/e_log10.c b/sysdeps/ieee754/dbl-64/wordsize-64/e_log10.c new file mode 100644 index 0000000000..488a0efaed --- /dev/null +++ b/sysdeps/ieee754/dbl-64/wordsize-64/e_log10.c @@ -0,0 +1,86 @@ +/* @(#)e_log10.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_log10(x) + * Return the base 10 logarithm of x + * + * Method : + * Let log10_2hi = leading 40 bits of log10(2) and + * log10_2lo = log10(2) - log10_2hi, + * ivln10 = 1/log(10) rounded. + * Then + * n = ilogb(x), + * if(n<0) n = n+1; + * x = scalbn(x,-n); + * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) + * + * Note 1: + * To guarantee log10(10**n)=n, where 10**n is normal, the rounding + * mode must set to Round-to-Nearest. + * Note 2: + * [1/log(10)] rounded to 53 bits has error .198 ulps; + * log10 is monotonic at all binary break points. + * + * Special cases: + * log10(x) is NaN with signal if x < 0; + * log10(+INF) is +INF with no signal; log10(0) is -INF with signal; + * log10(NaN) is that NaN with no signal; + * log10(10**N) = N for N=0,1,...,22. + * + * Constants: + * The hexadecimal values are the intended ones for the following constants. + * The decimal values may be used, provided that the compiler will convert + * from decimal to binary accurately enough to produce the hexadecimal values + * shown. + */ + +#include <math.h> +#include <math_private.h> + +static const double two54 = 1.80143985094819840000e+16; /* 0x4350000000000000 */ +static const double ivln10 = 4.34294481903251816668e-01; /* 0x3FDBCB7B1526E50E */ +static const double log10_2hi = 3.01029995663611771306e-01; /* 0x3FD34413509F6000 */ +static const double log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF311F12B36 */ + +double +__ieee754_log10 (double x) +{ + double y, z; + int64_t i, hx; + int32_t k; + + EXTRACT_WORDS64 (hx, x); + + k = 0; + if (hx < INT64_C(0x0010000000000000)) + { /* x < 2**-1022 */ + if (__builtin_expect ((hx & UINT64_C(0x7fffffffffffffff)) == 0, 0)) + return -two54 / (x - x); /* log(+-0)=-inf */ + if (__builtin_expect (hx < 0, 0)) + return (x - x) / (x - x); /* log(-#) = NaN */ + k -= 54; + x *= two54; /* subnormal number, scale up x */ + EXTRACT_WORDS64 (hx, x); + } + /* scale up resulted in a NaN number */ + if (__builtin_expect (hx >= UINT64_C(0x7ff0000000000000), 0)) + return x + x; + k += (hx >> 52) - 1023; + i = ((uint64_t) k & UINT64_C(0x8000000000000000)) >> 63; + hx = (hx & UINT64_C(0x000fffffffffffff)) | ((0x3ff - i) << 52); + y = (double) (k + i); + INSERT_WORDS64 (x, hx); + z = y * log10_2lo + ivln10 * __ieee754_log (x); + return z + y * log10_2hi; +} + +strong_alias (__ieee754_log10, __log10_finite) diff --git a/sysdeps/ieee754/dbl-64/wordsize-64/e_log2.c b/sysdeps/ieee754/dbl-64/wordsize-64/e_log2.c new file mode 100644 index 0000000000..6dc7b7d217 --- /dev/null +++ b/sysdeps/ieee754/dbl-64/wordsize-64/e_log2.c @@ -0,0 +1,128 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_log2(x) + * Return the logarithm to base 2 of x + * + * Method : + * 1. Argument Reduction: find k and f such that + * x = 2^k * (1+f), + * where sqrt(2)/2 < 1+f < sqrt(2) . + * + * 2. Approximation of log(1+f). + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + * = 2s + 2/3 s**3 + 2/5 s**5 + ....., + * = 2s + s*R + * We use a special Reme algorithm on [0,0.1716] to generate + * a polynomial of degree 14 to approximate R The maximum error + * of this polynomial approximation is bounded by 2**-58.45. In + * other words, + * 2 4 6 8 10 12 14 + * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s + * (the values of Lg1 to Lg7 are listed in the program) + * and + * | 2 14 | -58.45 + * | Lg1*s +...+Lg7*s - R(z) | <= 2 + * | | + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + * In order to guarantee error in log below 1ulp, we compute log + * by + * log(1+f) = f - s*(f - R) (if f is not too large) + * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) + * + * 3. Finally, log(x) = k + log(1+f). + * = k+(f-(hfsq-(s*(hfsq+R)))) + * + * Special cases: + * log2(x) is NaN with signal if x < 0 (including -INF) ; + * log2(+INF) is +INF; log(0) is -INF with signal; + * log2(NaN) is that NaN with no signal. + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include <math.h> +#include <math_private.h> + +static const double ln2 = 0.69314718055994530942; +static const double two54 = 1.80143985094819840000e+16; /* 4350000000000000 */ +static const double Lg1 = 6.666666666666735130e-01; /* 3FE5555555555593 */ +static const double Lg2 = 3.999999999940941908e-01; /* 3FD999999997FA04 */ +static const double Lg3 = 2.857142874366239149e-01; /* 3FD2492494229359 */ +static const double Lg4 = 2.222219843214978396e-01; /* 3FCC71C51D8E78AF */ +static const double Lg5 = 1.818357216161805012e-01; /* 3FC7466496CB03DE */ +static const double Lg6 = 1.531383769920937332e-01; /* 3FC39A09D078C69F */ +static const double Lg7 = 1.479819860511658591e-01; /* 3FC2F112DF3E5244 */ + +static const double zero = 0.0; + +double +__ieee754_log2 (double x) +{ + double hfsq, f, s, z, R, w, t1, t2, dk; + int64_t hx, i, j; + int32_t k; + + EXTRACT_WORDS64 (hx, x); + + k = 0; + if (hx < INT64_C(0x0010000000000000)) + { /* x < 2**-1022 */ + if (__builtin_expect ((hx & UINT64_C(0x7fffffffffffffff)) == 0, 0)) + return -two54 / (x - x); /* log(+-0)=-inf */ + if (__builtin_expect (hx < 0, 0)) + return (x - x) / (x - x); /* log(-#) = NaN */ + k -= 54; + x *= two54; /* subnormal number, scale up x */ + EXTRACT_WORDS64 (hx, x); + } + if (__builtin_expect (hx >= UINT64_C(0x7ff0000000000000), 0)) + return x + x; + k += (hx >> 52) - 1023; + hx &= UINT64_C(0x000fffffffffffff); + i = (hx + UINT64_C(0x95f6400000000)) & UINT64_C(0x10000000000000); + /* normalize x or x/2 */ + INSERT_WORDS64 (x, hx | (i ^ UINT64_C(0x3ff0000000000000))); + k += (i >> 52); + dk = (double) k; + f = x - 1.0; + if ((UINT64_C(0x000fffffffffffff) & (2 + hx)) < 3) + { /* |f| < 2**-20 */ + if (f == zero) + return dk; + R = f * f * (0.5 - 0.33333333333333333 * f); + return dk - (R - f) / ln2; + } + s = f / (2.0 + f); + z = s * s; + i = hx - UINT64_C(0x6147a00000000); + w = z * z; + j = UINT64_C(0x6b85100000000) - hx; + t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); + t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); + i |= j; + R = t2 + t1; + if (i > 0) + { + hfsq = 0.5 * f * f; + return dk - ((hfsq - (s * (hfsq + R))) - f) / ln2; + } + else + { + return dk - ((s * (f - R)) - f) / ln2; + } +} + +strong_alias (__ieee754_log2, __log2_finite) |