about summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64
diff options
context:
space:
mode:
authorWilco Dijkstra <Wilco.Dijkstra@arm.com>2021-03-08 17:07:39 -0300
committerAdhemerval Zanella <adhemerval.zanella@linaro.org>2021-12-13 09:02:34 -0300
commit6c848d70383e1dbe932ef41723ac0abfdeec7ca8 (patch)
tree366dd2d23fb72a4a31b7e44a81d355f46627355a /sysdeps/ieee754/dbl-64
parent7fe0ace3e289c88cab5014cef94e946fd695221f (diff)
downloadglibc-6c848d70383e1dbe932ef41723ac0abfdeec7ca8.tar.gz
glibc-6c848d70383e1dbe932ef41723ac0abfdeec7ca8.tar.xz
glibc-6c848d70383e1dbe932ef41723ac0abfdeec7ca8.zip
math: Use an improved algorithm for hypot (dbl-64)
This implementation is based on the 'An Improved Algorithm for
hypot(a,b)' by Carlos F. Borges [1] using the MyHypot3 with the
following changes:

 - Handle qNaN and sNaN.
 - Tune the 'widely varying operands' to avoid spurious underflow
   due the multiplication and fix the return value for upwards
   rounding mode.
 - Handle required underflow exception for denormal results.

The main advantage of the new algorithm is its precision: with a
random 1e9 input pairs in the range of [DBL_MIN, DBL_MAX], glibc
current implementation shows around 0.34% results with an error of
1 ulp (3424869 results) while the new implementation only shows
0.002% of total (18851).

The performance result are also only slight worse than current
implementation.  On x86_64 (Ryzen 5900X) with gcc 12:

Before:

  "hypot": {
   "workload-random": {
    "duration": 3.73319e+09,
    "iterations": 1.12e+08,
    "reciprocal-throughput": 22.8737,
    "latency": 43.7904,
    "max-throughput": 4.37184e+07,
    "min-throughput": 2.28361e+07
   }
  }

After:

  "hypot": {
   "workload-random": {
    "duration": 3.7597e+09,
    "iterations": 9.8e+07,
    "reciprocal-throughput": 23.7547,
    "latency": 52.9739,
    "max-throughput": 4.2097e+07,
    "min-throughput": 1.88772e+07
   }
  }

Co-Authored-By: Adhemerval Zanella  <adhemerval.zanella@linaro.org>

Checked on x86_64-linux-gnu and aarch64-linux-gnu.

[1] https://arxiv.org/pdf/1904.09481.pdf
Diffstat (limited to 'sysdeps/ieee754/dbl-64')
-rw-r--r--sysdeps/ieee754/dbl-64/e_hypot.c235
1 files changed, 92 insertions, 143 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_hypot.c b/sysdeps/ieee754/dbl-64/e_hypot.c
index 9ec4c1ced0..75bce2df4e 100644
--- a/sysdeps/ieee754/dbl-64/e_hypot.c
+++ b/sysdeps/ieee754/dbl-64/e_hypot.c
@@ -1,164 +1,113 @@
-/* @(#)e_hypot.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_hypot(x,y)
- *
- * Method :
- *	If (assume round-to-nearest) z=x*x+y*y
- *	has error less than sqrt(2)/2 ulp, than
- *	sqrt(z) has error less than 1 ulp (exercise).
- *
- *	So, compute sqrt(x*x+y*y) with some care as
- *	follows to get the error below 1 ulp:
- *
- *	Assume x>y>0;
- *	(if possible, set rounding to round-to-nearest)
- *	1. if x > 2y  use
- *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
- *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
- *	2. if x <= 2y use
- *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
- *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
- *	y1= y with lower 32 bits chopped, y2 = y-y1.
- *
- *	NOTE: scaling may be necessary if some argument is too
- *	      large or too tiny
- *
- * Special cases:
- *	hypot(x,y) is INF if x or y is +INF or -INF; else
- *	hypot(x,y) is NAN if x or y is NAN.
- *
- * Accuracy:
- *	hypot(x,y) returns sqrt(x^2+y^2) with error less
- *	than 1 ulps (units in the last place)
- */
+/* Euclidean distance function.  Double/Binary64 version.
+   Copyright (C) 2021 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <https://www.gnu.org/licenses/>.  */
+
+/* The implementation uses a correction based on 'An Improved Algorithm for
+   hypot(a,b)' by Carlos F. Borges [1] usingthe MyHypot3 with the following
+   changes:
+
+   - Handle qNaN and sNaN.
+   - Tune the 'widely varying operands' to avoid spurious underflow
+     due the multiplication and fix the return value for upwards
+     rounding mode.
+   - Handle required underflow exception for subnormal results.
+
+   The expected ULP is ~0.792.
+
+   [1] https://arxiv.org/pdf/1904.09481.pdf  */
 
 #include <math.h>
 #include <math_private.h>
 #include <math-underflow.h>
+#include <math-narrow-eval.h>
 #include <libm-alias-finite.h>
+#include "math_config.h"
 
-double
-__ieee754_hypot (double x, double y)
+#define SCALE     0x1p-600
+#define LARGE_VAL 0x1p+511
+#define TINY_VAL  0x1p-459
+#define EPS       0x1p-54
+
+/* Hypot kernel. The inputs must be adjusted so that ax >= ay >= 0
+   and squaring ax, ay and (ax - ay) does not overflow or underflow.  */
+static inline double
+kernel (double ax, double ay)
 {
-  double a, b, t1, t2, y1, y2, w;
-  int32_t j, k, ha, hb;
-
-  GET_HIGH_WORD (ha, x);
-  ha &= 0x7fffffff;
-  GET_HIGH_WORD (hb, y);
-  hb &= 0x7fffffff;
-  if (hb > ha)
+  double t1, t2;
+  double h = sqrt (ax * ax + ay * ay);
+  if (h <= 2.0 * ay)
     {
-      a = y; b = x; j = ha; ha = hb; hb = j;
+      double delta = h - ay;
+      t1 = ax * (2.0 * delta - ax);
+      t2 = (delta - 2.0 * (ax - ay)) * delta;
     }
   else
     {
-      a = x; b = y;
-    }
-  SET_HIGH_WORD (a, ha);        /* a <- |a| */
-  SET_HIGH_WORD (b, hb);        /* b <- |b| */
-  if ((ha - hb) > 0x3c00000)
-    {
-      return a + b;
-    }                                       /* x/y > 2**60 */
-  k = 0;
-  if (__glibc_unlikely (ha > 0x5f300000))                  /* a>2**500 */
-    {
-      if (ha >= 0x7ff00000)             /* Inf or NaN */
-	{
-	  uint32_t low;
-	  w = a + b;                    /* for sNaN */
-	  if (issignaling (a) || issignaling (b))
-	    return w;
-	  GET_LOW_WORD (low, a);
-	  if (((ha & 0xfffff) | low) == 0)
-	    w = a;
-	  GET_LOW_WORD (low, b);
-	  if (((hb ^ 0x7ff00000) | low) == 0)
-	    w = b;
-	  return w;
-	}
-      /* scale a and b by 2**-600 */
-      ha -= 0x25800000; hb -= 0x25800000;  k += 600;
-      SET_HIGH_WORD (a, ha);
-      SET_HIGH_WORD (b, hb);
-    }
-  if (__builtin_expect (hb < 0x23d00000, 0))            /* b < 2**-450 */
-    {
-      if (hb <= 0x000fffff)             /* subnormal b or 0 */
-	{
-	  uint32_t low;
-	  GET_LOW_WORD (low, b);
-	  if ((hb | low) == 0)
-	    return a;
-	  t1 = 0;
-	  SET_HIGH_WORD (t1, 0x7fd00000);       /* t1=2^1022 */
-	  b *= t1;
-	  a *= t1;
-	  k -= 1022;
-	  GET_HIGH_WORD (ha, a);
-	  GET_HIGH_WORD (hb, b);
-	  if (hb > ha)
-	    {
-	      t1 = a;
-	      a = b;
-	      b = t1;
-	      j = ha;
-	      ha = hb;
-	      hb = j;
-	    }
-	}
-      else                      /* scale a and b by 2^600 */
-	{
-	  ha += 0x25800000;             /* a *= 2^600 */
-	  hb += 0x25800000;             /* b *= 2^600 */
-	  k -= 600;
-	  SET_HIGH_WORD (a, ha);
-	  SET_HIGH_WORD (b, hb);
-	}
+      double delta = h - ax;
+      t1 = 2.0 * delta * (ax - 2.0 * ay);
+      t2 = (4.0 * delta - ay) * ay + delta * delta;
     }
-  /* medium size a and b */
-  w = a - b;
-  if (w > b)
+
+  h -= (t1 + t2) / (2.0 * h);
+  return h;
+}
+
+double
+__ieee754_hypot (double x, double y)
+{
+  if (!isfinite(x) || !isfinite(y))
     {
-      t1 = 0;
-      SET_HIGH_WORD (t1, ha);
-      t2 = a - t1;
-      w = sqrt (t1 * t1 - (b * (-b) - t2 * (a + t1)));
+      if ((isinf (x) || isinf (y))
+	  && !issignaling_inline (x) && !issignaling_inline (y))
+	return INFINITY;
+      return x + y;
     }
-  else
+
+  x = fabs (x);
+  y = fabs (y);
+
+  double ax = x < y ? y : x;
+  double ay = x < y ? x : y;
+
+  /* If ax is huge, scale both inputs down.  */
+  if (__glibc_unlikely (ax > LARGE_VAL))
     {
-      a = a + a;
-      y1 = 0;
-      SET_HIGH_WORD (y1, hb);
-      y2 = b - y1;
-      t1 = 0;
-      SET_HIGH_WORD (t1, ha + 0x00100000);
-      t2 = a - t1;
-      w = sqrt (t1 * y1 - (w * (-w) - (t1 * y2 + t2 * b)));
+      if (__glibc_unlikely (ay <= ax * EPS))
+	return math_narrow_eval (ax + ay);
+
+      return math_narrow_eval (kernel (ax * SCALE, ay * SCALE) / SCALE);
     }
-  if (k != 0)
+
+  /* If ay is tiny, scale both inputs up.  */
+  if (__glibc_unlikely (ay < TINY_VAL))
     {
-      uint32_t high;
-      t1 = 1.0;
-      GET_HIGH_WORD (high, t1);
-      SET_HIGH_WORD (t1, high + (k << 20));
-      w *= t1;
-      math_check_force_underflow_nonneg (w);
-      return w;
+      if (__glibc_unlikely (ax >= ay / EPS))
+	return math_narrow_eval (ax + ay);
+
+      ax = math_narrow_eval (kernel (ax / SCALE, ay / SCALE) * SCALE);
+      math_check_force_underflow_nonneg (ax);
+      return ax;
     }
-  else
-    return w;
+
+  /* Common case: ax is not huge and ay is not tiny.  */
+  if (__glibc_unlikely (ay <= ax * EPS))
+    return ax + ay;
+
+  return kernel (ax, ay);
 }
 #ifndef __ieee754_hypot
 libm_alias_finite (__ieee754_hypot, __hypot)