about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/s_log1pf.S
diff options
context:
space:
mode:
authorJakub Jelinek <jakub@redhat.com>2007-07-12 18:26:36 +0000
committerJakub Jelinek <jakub@redhat.com>2007-07-12 18:26:36 +0000
commit0ecb606cb6cf65de1d9fc8a919bceb4be476c602 (patch)
tree2ea1f8305970753e4a657acb2ccc15ca3eec8e2c /sysdeps/ia64/fpu/s_log1pf.S
parent7d58530341304d403a6626d7f7a1913165fe2f32 (diff)
downloadglibc-0ecb606cb6cf65de1d9fc8a919bceb4be476c602.tar.gz
glibc-0ecb606cb6cf65de1d9fc8a919bceb4be476c602.tar.xz
glibc-0ecb606cb6cf65de1d9fc8a919bceb4be476c602.zip
2.5-18.1
Diffstat (limited to 'sysdeps/ia64/fpu/s_log1pf.S')
-rw-r--r--sysdeps/ia64/fpu/s_log1pf.S2030
1 files changed, 595 insertions, 1435 deletions
diff --git a/sysdeps/ia64/fpu/s_log1pf.S b/sysdeps/ia64/fpu/s_log1pf.S
index 8aff9b895a..77e79c39df 100644
--- a/sysdeps/ia64/fpu/s_log1pf.S
+++ b/sysdeps/ia64/fpu/s_log1pf.S
@@ -1,10 +1,10 @@
-.file "log1pf.s" 
+.file "log1pf.s"
 
-// Copyright (C) 2000, 2001, Intel Corporation
+
+// Copyright (c) 2000 - 2003, Intel Corporation
 // All rights reserved.
-// 
-// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
-// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
 //
 // Redistribution and use in source and binary forms, with or without
 // modification, are permitted provided that the following conditions are
@@ -20,1610 +20,770 @@
 // * The name of Intel Corporation may not be used to endorse or promote
 // products derived from this software without specific prior written
 // permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
-// 
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
 // Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at 
-// http://developer.intel.com/opensource.
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
 //
 // History
 //==============================================================
-// 2/02/00  Initial version
-// 4/04/00  Unwind support added
-// 8/15/00  Bundle added after call to __libm_error_support to properly
+// 02/02/00 Initial version
+// 04/04/00 Unwind support added
+// 08/15/00 Bundle added after call to __libm_error_support to properly
 //          set [the previously overwritten] GR_Parameter_RESULT.
+// 06/29/01 Improved speed of all paths
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 10/02/02 Improved performance by basing on log algorithm
+// 02/10/03 Reordered header: .section, .global, .proc, .align
+// 04/18/03 Eliminate possible WAW dependency warning
+// 12/16/03 Fixed parameter passing to/from error handling routine
+//
+// API
+//==============================================================
+// float log1pf(float)
 //
-// *********************************************************************
-//
-// Function:   log1pf(x) = ln(x+1), for single precision values
-//
-// *********************************************************************
-//
-// Accuracy:   Very accurate for single precision values
-//
-// *********************************************************************
-//
-// Resources Used:
-//
-//    Floating-Point Registers: f8 (Input and Return Value)
-//                              f9,f33-f55,f99 
-//
-//    General Purpose Registers:
-//      r32-r53
-//      r54-r57 (Used to pass arguments to error handling routine)
-//
-//    Predicate Registers:      p6-p15
-//
-// *********************************************************************
-//
-// IEEE Special Conditions:
-//
-//    Denormal  fault raised on denormal inputs
-//    Overflow exceptions cannot occur  
-//    Underflow exceptions raised when appropriate for log1pf 
-//    (Error Handling Routine called for underflow)
-//    Inexact raised when appropriate by algorithm
-//
-//    log1pf(inf) = inf
-//    log1pf(-inf) = QNaN 
-//    log1pf(+/-0) = +/-0 
-//    log1pf(-1) =  -inf 
-//    log1pf(SNaN) = QNaN
-//    log1pf(QNaN) = QNaN
-//    log1pf(EM_special Values) = QNaN
-//
-// *********************************************************************
-//
-// Computation is based on the following kernel.
-//
-// ker_log_64( in_FR    :  X,
-// 	    in_FR    :  E,
-// 	    in_FR    :  Em1,
-// 	    in_GR    :  Expo_Range,
-// 	    out_FR   :  Y_hi,
-// 	    out_FR   :  Y_lo,
-// 	    out_FR   :  Scale,
-// 	    out_PR   :  Safe  )
-// 
-// Overview
-//
-// The method consists of three cases.
-//
-// If	|X+Em1| < 2^(-80)	use case log1pf_small;
-// elseif	|X+Em1| < 2^(-7)	use case log_near1;
-// else				use case log_regular;
-//
-// Case log1pf_small:
-//
-// log( 1 + (X+Em1) ) can be approximated by (X+Em1).
-//
-// Case log_near1:
-//
-//   log( 1 + (X+Em1) ) can be approximated by a simple polynomial
-//   in W = X+Em1. This polynomial resembles the truncated Taylor
-//   series W - W^/2 + W^3/3 - ...
-// 
-// Case log_regular:
-//
-//   Here we use a table lookup method. The basic idea is that in
-//   order to compute log(Arg) for an argument Arg in [1,2), we 
-//   construct a value G such that G*Arg is close to 1 and that
-//   log(1/G) is obtainable easily from a table of values calculated
-//   beforehand. Thus
-//
-//	log(Arg) = log(1/G) + log(G*Arg)
-//		 = log(1/G) + log(1 + (G*Arg - 1))
-//
-//   Because |G*Arg - 1| is small, the second term on the right hand
-//   side can be approximated by a short polynomial. We elaborate
-//   this method in four steps.
-//
-//   Step 0: Initialization
-//
-//   We need to calculate log( E + X ). Obtain N, S_hi, S_lo such that
-//
-//	E + X = 2^N * ( S_hi + S_lo )	exactly
-//
-//   where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
-//   that |S_lo| <= ulp(S_hi).
-//
-//   Step 1: Argument Reduction
-//
-//   Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
-//
-//	G := G_1 * G_2 * G_3
-//	r := (G * S_hi - 1)  + G * S_lo
-//
-//   These G_j's have the property that the product is exactly 
-//   representable and that |r| < 2^(-12) as a result.
-//
-//   Step 2: Approximation
-//
-//
-//   log(1 + r) is approximated by a short polynomial poly(r).
-//
-//   Step 3: Reconstruction
-//
-//
-//   Finally, log( E + X ) is given by
-//
-//   log( E + X )   =   log( 2^N * (S_hi + S_lo) )
-//                 ~=~  N*log(2) + log(1/G) + log(1 + r)
-//                 ~=~  N*log(2) + log(1/G) + poly(r).
-//
-// **** Algorithm ****
-//
-// Case log1pf_small:
-//
-// Although log(1 + (X+Em1)) is basically X+Em1, we would like to 
-// preserve the inexactness nature as well as consistent behavior
-// under different rounding modes. Note that this case can only be
-// taken if E is set to be 1.0. In this case, Em1 is zero, and that
-// X can be very tiny and thus the final result can possibly underflow.
-// Thus, we compare X against a threshold that is dependent on the
-// input Expo_Range. If |X| is smaller than this threshold, we set
-// SAFE to be FALSE. 
-//
-// The result is returned as Y_hi, Y_lo, and in the case of SAFE 
-// is FALSE, an additional value Scale is also returned. 
-//
-//	W    := X + Em1
-//      Threshold := Threshold_Table( Expo_Range )
-//      Tiny      := Tiny_Table( Expo_Range )
-//
-//      If ( |W| > Threshold ) then
-//         Y_hi  := W
-//         Y_lo  := -W*W
-//      Else
-//         Y_hi  := W
-//         Y_lo  := -Tiny
-//         Scale := 2^(-100)
-//         Safe  := FALSE
-//      EndIf
-//
-//
-// One may think that Y_lo should be -W*W/2; however, it does not matter
-// as Y_lo will be rounded off completely except for the correct effect in 
-// directed rounding. Clearly -W*W is simplier to compute. Moreover,
-// because of the difference in exponent value, Y_hi + Y_lo or 
-// Y_hi + Scale*Y_lo is always inexact.
-//
-// Case log_near1:
-//
-// Here we compute a simple polynomial. To exploit parallelism, we split
-// the polynomial into two portions.
-// 
-// 	W := X + Em1
-// 	Wsq := W * W
-// 	W4  := Wsq*Wsq
-// 	W6  := W4*Wsq
-// 	Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
-// 	Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
-//      set lsb(Y_lo) to be 1
-//
-// Case log_regular:
-//
-// We present the algorithm in four steps.
-//
-//   Step 0. Initialization
-//   ----------------------
-//
-//   Z := X + E
-//   N := unbaised exponent of Z
-//   S_hi := 2^(-N) * Z
-//   S_lo := 2^(-N) * { (max(X,E)-Z) + min(X,E) }
-//
-//   Note that S_lo is always 0 for the case E = 0.
-//
-//   Step 1. Argument Reduction
-//   --------------------------
-//
-//   Let
-//
-//	Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
-//
-//   We obtain G_1, G_2, G_3 by the following steps.
-//
-//
-//	Define		X_0 := 1.d_1 d_2 ... d_14. This is extracted
-//			from S_hi.
+// log1p(x) = log(x+1)
 //
-//	Define		A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
-//			to lsb = 2^(-4).
+// Overview of operation
+//==============================================================
+// Background
+// ----------
 //
-//	Define		index_1 := [ d_1 d_2 d_3 d_4 ].
+// This algorithm is based on fact that
+// log1p(x) = log(1+x) and
+// log(a b) = log(a) + log(b).
+// In our case we have 1+x = 2^N f, where 1 <= f < 2.
+// So
+//   log(1+x) = log(2^N f) = log(2^N) + log(f) = n*log(2) + log(f)
 //
-//	Fetch 		Z_1 := (1/A_1) rounded UP in fixed point with
-//	fixed point	lsb = 2^(-15).
-//			Z_1 looks like z_0.z_1 z_2 ... z_15
-//		        Note that the fetching is done using index_1.
-//			A_1 is actually not needed in the implementation
-//			and is used here only to explain how is the value
-//			Z_1 defined.
+// To calculate log(f) we do following
+//   log(f) = log(f * frcpa(f) / frcpa(f)) =
+//          = log(f * frcpa(f)) + log(1/frcpa(f))
 //
-//	Fetch		G_1 := (1/A_1) truncated to 21 sig. bits.
-//	floating pt.	Again, fetching is done using index_1. A_1
-//			explains how G_1 is defined.
+// According to definition of IA-64's frcpa instruction it's a
+// floating point that approximates 1/f using a lookup on the
+// top of 8 bits of the input number's + 1 significand with relative
+// error < 2^(-8.886). So we have following
 //
-//	Calculate	X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
-//			     = 1.0 0 0 0 d_5 ... d_14
-//			This is accomplised by integer multiplication.
-//			It is proved that X_1 indeed always begin
-//			with 1.0000 in fixed point.
+// |(1/f - frcpa(f)) / (1/f))| = |1 - f*frcpa(f)| < 1/256
 //
+// and
 //
-//	Define		A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1 
-//			truncated to lsb = 2^(-8). Similar to A_1,
-//			A_2 is not needed in actual implementation. It
-//			helps explain how some of the values are defined.
+// log(f) = log(f * frcpa(f)) + log(1/frcpa(f)) =
+//        = log(1 + r) + T
 //
-//	Define		index_2 := [ d_5 d_6 d_7 d_8 ].
+// The first value can be computed by polynomial P(r) approximating
+// log(1 + r) on |r| < 1/256 and the second is precomputed tabular
+// value defined by top 8 bit of f.
 //
-//	Fetch 		Z_2 := (1/A_2) rounded UP in fixed point with
-//	fixed point	lsb = 2^(-15). Fetch done using index_2.
-//			Z_2 looks like z_0.z_1 z_2 ... z_15
+// Finally we have that  log(1+x) ~ (N*log(2) + T) + P(r)
 //
-//	Fetch		G_2 := (1/A_2) truncated to 21 sig. bits.
-//	floating pt.
+// Note that if input argument is close to 0.0 (in our case it means
+// that |x| < 1/256) we can use just polynomial approximation
+// because 1+x = 2^0 * f = f = 1 + r and
+// log(1+x) = log(1 + r) ~ P(r)
 //
-//	Calculate	X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
-//			     = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
-//			This is accomplised by integer multiplication.
-//			It is proved that X_2 indeed always begin
-//			with 1.00000000 in fixed point.
 //
+// Implementation
+// --------------
 //
-//	Define		A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
-//			This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
+// 1. |x| >= 2^(-8), and x > -1
+//   InvX = frcpa(x+1)
+//   r = InvX*(x+1) - 1
+//   P(r) = r*((1 - A2*4) + r^2*(A3 - A4*r)) = r*P2(r),
+//   A4,A3,A2 are created with setf instruction.
+//   We use Taylor series and so A4 = 1/4, A3 = 1/3,
+//   A2 = 1/2 rounded to double.
 //
-//	Define		index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
+//   N = float(n) where n is true unbiased exponent of x
 //
-//	Fetch		G_3 := (1/A_3) truncated to 21 sig. bits.
-//	floating pt.	Fetch is done using index_3.
+//   T is tabular value of log(1/frcpa(x)) calculated in quad precision
+//   and rounded to double.  To load T we get bits from 55 to 62 of register
+//   format significand as index and calculate address
+//     ad_T = table_base_addr + 8 * index
 //
-//	Compute		G := G_1 * G_2 * G_3. 
+//   L1 (log(2)) is calculated in quad precision and rounded to double;
+//   it's created with setf
 //
-//	This is done exactly since each of G_j only has 21 sig. bits.
+//   And final result = P2(r)*r + (T + N*L1)
 //
-//	Compute   
 //
-//		r := (G*S_hi - 1) + G*S_lo   using 2 FMA operations.
+// 2. 2^(-40) <= |x| < 2^(-8)
+//   r = x
+//   P(r) = r*((1 - A2*4) + r^2*(A3 - A4*r)) = r*P2(r),
+//   A4,A3,A2 are the same as in case |x| >= 1/256
 //
-//	thus, r approximates G*(S_hi+S_lo) - 1 to within a couple of 
-//	rounding errors.
+//   And final result = P2(r)*r
 //
+// 3. 0 < |x| < 2^(-40)
+//   Although log1p(x) is basically x, we would like to preserve the inexactness
+//   nature as well as consistent behavior under different rounding modes.
+//   We can do this by computing the result as
 //
-//  Step 2. Approximation
-//  ---------------------
+//     log1p(x) = x - x*x
 //
-//   This step computes an approximation to log( 1 + r ) where r is the
-//   reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
-//   thus log(1+r) can be approximated by a short polynomial:
 //
-//	log(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
+//    Note: NaT, any NaNs, +/-INF, +/-0, negatives and unnormalized numbers are
+//          filtered and processed on special branches.
 //
+
 //
-//  Step 3. Reconstruction
-//  ----------------------
+// Special values
+//==============================================================
 //
-//   This step computes the desired result of log(X+E):
+// log1p(-1)    = -inf            // Call error support
 //
-//	log(X+E)  =   log( 2^N * (S_hi + S_lo) )
-//		  =   N*log(2) + log( S_hi + S_lo )
-//		  =   N*log(2) + log(1/G) +
-//		      log(1 + C*(S_hi+S_lo) - 1 )
+// log1p(+qnan) = +qnan
+// log1p(-qnan) = -qnan
+// log1p(+snan) = +qnan
+// log1p(-snan) = -qnan
 //
-//   log(2), log(1/G_j) are stored as pairs of (single,double) numbers:
-//   log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
-//   single-precision numbers and the low parts are double precision
-//   numbers. These have the property that
+// log1p(x),x<-1= QNAN Indefinite // Call error support
+// log1p(-inf)  = QNAN Indefinite
+// log1p(+inf)  = +inf
+// log1p(+/-0)  = +/-0
 //
-//	N*log2_hi + SUM ( log1byGj_hi )
 //
-//   is computable exactly in double-extended precision (64 sig. bits).
-//   Finally
+// Registers used
+//==============================================================
+// Floating Point registers used:
+// f8, input
+// f7 -> f15,  f32 -> f36
 //
-//	Y_hi := N*log2_hi + SUM ( log1byGj_hi )
-//	Y_lo := poly_hi + [ poly_lo + 
-//	        ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
-//      set lsb(Y_lo) to be 1
+// General registers used:
+// r8  -> r11
+// r14 -> r22
 //
+// Predicate registers used:
+// p6 -> p12
 
-#include "libm_support.h"
-
-#ifdef _LIBC
-.rodata
-#else
-.data
-#endif
+// Assembly macros
+//==============================================================
+GR_TAG                 = r8
+GR_ad_T                = r9
+GR_Exp                 = r10
+GR_N                   = r11
 
-// P_7, P_6, P_5, P_4, P_3, P_2, and P_1 
+GR_signexp_x           = r14
+GR_exp_mask            = r15
+GR_exp_bias            = r16
+GR_05                  = r17
+GR_A3                  = r18
+GR_Sig                 = r19
+GR_Ind                 = r19
+GR_exp_x               = r20
+GR_Ln2                 = r21
+GR_025                 = r22
 
-.align 64
-Constants_P:
-ASM_TYPE_DIRECTIVE(Constants_P,@object)
-data4  0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
-data4  0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
-data4  0x73282DB0,0x9249248C,0x00003FFC,0x00000000
-data4  0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
-data4  0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
-data4  0x00067ED5,0x80000000,0x0000BFFD,0x00000000
-data4  0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
-data4  0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
-ASM_SIZE_DIRECTIVE(Constants_P)
- 
-// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1 
 
-.align 64
-Constants_Q:
-ASM_TYPE_DIRECTIVE(Constants_Q,@object)
-data4  0x00000000,0xB1721800,0x00003FFE,0x00000000 
-data4  0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
-data4  0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
-data4  0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
-data4  0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
-data4  0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
-ASM_SIZE_DIRECTIVE(Constants_Q)
- 
-// Z1 - 16 bit fixed, G1 and H1 - IEEE single 
- 
-.align 64
-Constants_Z_G_H_h1:
-ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h1,@object)
-data4  0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
-data4  0x00007879,0x3F70F0F0,0x3D785196,0x00000000,0x617D741C,0x3DA163A6
-data4  0x000071C8,0x3F638E38,0x3DF13843,0x00000000,0xCBD3D5BB,0x3E2C55E6
-data4  0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000,0xD86EA5E7,0xBE3EB0BF
-data4  0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000,0x86B12760,0x3E2E6A8C
-data4  0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000,0x5C0739BA,0x3E47574C
-data4  0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000,0x13E8AF2F,0x3E20E30F
-data4  0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000,0xF2C630BD,0xBE42885B
-data4  0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000,0x97E577C6,0x3E497F34
-data4  0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000,0xA6B0A5AB,0x3E3E6A6E
-data4  0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000,0xD328D9BE,0xBDF43E3C
-data4  0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000,0x0ADB090A,0x3E4094C3
-data4  0x00004925,0x3F124920,0x3F0F4303,0x00000000,0xFC1FE510,0xBE28FBB2
-data4  0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000,0x10FDE3FA,0x3E3A7895
-data4  0x00004445,0x3F088888,0x3F20EC80,0x00000000,0x7CC8C98F,0x3E508CE5
-data4  0x00004211,0x3F042108,0x3F29516A,0x00000000,0xA223106C,0xBE534874
-ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h1)
- 
-// Z2 - 16 bit fixed, G2 and H2 - IEEE single 
+GR_SAVE_B0             = r33
+GR_SAVE_PFS            = r34
+GR_SAVE_GP             = r35
+GR_SAVE_SP             = r36
 
-.align 64 
-Constants_Z_G_H_h2:
-ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h2,@object)
-data4  0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
-data4  0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000,0x22C42273,0x3DB5A116
-data4  0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000,0x21F86ED3,0x3DE620CF
-data4  0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000,0x484F34ED,0xBDAFA07E
-data4  0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000,0x3860BCF6,0xBDFE07F0
-data4  0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000,0xA78093D6,0x3DEA370F
-data4  0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000,0x72A753D0,0x3DFF5791
-data4  0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000,0xA7EF896B,0x3DFEBE6C
-data4  0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000,0x409ECB43,0x3E0CF156
-data4  0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000,0xFFEF71DF,0xBE0B6F97
-data4  0x00007B31,0x3F766038,0x3D1CF49B,0x00000000,0x5D59EEE8,0xBE080483
-data4  0x00007ABB,0x3F757400,0x3D2C531D,0x00000000,0xA9192A74,0x3E1F91E9
-data4  0x00007A45,0x3F748988,0x3D3BA322,0x00000000,0xBF72A8CD,0xBE139A06
-data4  0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000,0xF8FBA6CF,0x3E1D9202
-data4  0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000,0xBA796223,0xBE1DCCC4
-data4  0x000078EB,0x3F71D488,0x3D693B9D,0x00000000,0xB6B7C239,0xBE049391
-ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h2)
- 
-// G3 and H3 - IEEE single and h3 -IEEE double 
+GR_Parameter_X         = r37
+GR_Parameter_Y         = r38
+GR_Parameter_RESULT    = r39
+GR_Parameter_TAG       = r40
 
-.align 64 
-Constants_Z_G_H_h3:
-ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h3,@object)
-data4  0x3F7FFC00,0x38800100,0x562224CD,0x3D355595
-data4  0x3F7FF400,0x39400480,0x06136FF6,0x3D8200A2
-data4  0x3F7FEC00,0x39A00640,0xE8DE9AF0,0x3DA4D68D
-data4  0x3F7FE400,0x39E00C41,0xB10238DC,0xBD8B4291
-data4  0x3F7FDC00,0x3A100A21,0x3B1952CA,0xBD89CCB8
-data4  0x3F7FD400,0x3A300F22,0x1DC46826,0xBDB10707
-data4  0x3F7FCC08,0x3A4FF51C,0xF43307DB,0x3DB6FCB9
-data4  0x3F7FC408,0x3A6FFC1D,0x62DC7872,0xBD9B7C47
-data4  0x3F7FBC10,0x3A87F20B,0x3F89154A,0xBDC3725E
-data4  0x3F7FB410,0x3A97F68B,0x62B9D392,0xBD93519D
-data4  0x3F7FAC18,0x3AA7EB86,0x0F21BD9D,0x3DC18441
-data4  0x3F7FA420,0x3AB7E101,0x2245E0A6,0xBDA64B95
-data4  0x3F7F9C20,0x3AC7E701,0xAABB34B8,0x3DB4B0EC
-data4  0x3F7F9428,0x3AD7DD7B,0x6DC40A7E,0x3D992337
-data4  0x3F7F8C30,0x3AE7D474,0x4F2083D3,0x3DC6E17B
-data4  0x3F7F8438,0x3AF7CBED,0x811D4394,0x3DAE314B
-data4  0x3F7F7C40,0x3B03E1F3,0xB08F2DB1,0xBDD46F21
-data4  0x3F7F7448,0x3B0BDE2F,0x6D34522B,0xBDDC30A4
-data4  0x3F7F6C50,0x3B13DAAA,0xB1F473DB,0x3DCB0070
-data4  0x3F7F6458,0x3B1BD766,0x6AD282FD,0xBDD65DDC
-data4  0x3F7F5C68,0x3B23CC5C,0xF153761A,0xBDCDAB83
-data4  0x3F7F5470,0x3B2BC997,0x341D0F8F,0xBDDADA40
-data4  0x3F7F4C78,0x3B33C711,0xEBC394E8,0x3DCD1BD7
-data4  0x3F7F4488,0x3B3BBCC6,0x52E3E695,0xBDC3532B
-data4  0x3F7F3C90,0x3B43BAC0,0xE846B3DE,0xBDA3961E
-data4  0x3F7F34A0,0x3B4BB0F4,0x785778D4,0xBDDADF06
-data4  0x3F7F2CA8,0x3B53AF6D,0xE55CE212,0x3DCC3ED1
-data4  0x3F7F24B8,0x3B5BA620,0x9E382C15,0xBDBA3103
-data4  0x3F7F1CC8,0x3B639D12,0x5C5AF197,0x3D635A0B
-data4  0x3F7F14D8,0x3B6B9444,0x71D34EFC,0xBDDCCB19
-data4  0x3F7F0CE0,0x3B7393BC,0x52CD7ADA,0x3DC74502
-data4  0x3F7F04F0,0x3B7B8B6D,0x7D7F2A42,0xBDB68F17
-ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h3)
- 
-// 
-//  Exponent Thresholds and Tiny Thresholds
-//  for 8, 11, 15, and 17 bit exponents
-// 
-//  Expo_Range             Value
-// 
-//  0 (8  bits)            2^(-126)
-//  1 (11 bits)            2^(-1022)
-//  2 (15 bits)            2^(-16382)
-//  3 (17 bits)            2^(-16382)
-// 
-//  Tiny_Table
-//  ----------
-//  Expo_Range             Value
-// 
-//  0 (8  bits)            2^(-16382)
-//  1 (11 bits)            2^(-16382)
-//  2 (15 bits)            2^(-16382)
-//  3 (17 bits)            2^(-16382)
-// 
 
-.align 64 
-Constants_Threshold:
-ASM_TYPE_DIRECTIVE(Constants_Threshold,@object)
-data4  0x00000000,0x80000000,0x00003F81,0x00000000
-data4  0x00000000,0x80000000,0x00000001,0x00000000
-data4  0x00000000,0x80000000,0x00003C01,0x00000000
-data4  0x00000000,0x80000000,0x00000001,0x00000000
-data4  0x00000000,0x80000000,0x00000001,0x00000000
-data4  0x00000000,0x80000000,0x00000001,0x00000000
-data4  0x00000000,0x80000000,0x00000001,0x00000000
-data4  0x00000000,0x80000000,0x00000001,0x00000000
-ASM_SIZE_DIRECTIVE(Constants_Threshold)
 
-.align 64
-Constants_1_by_LN10:
-ASM_TYPE_DIRECTIVE(Constants_1_by_LN10,@object)
-data4  0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
-data4  0xACCF70C8,0xD56EAABE,0x00003FBD,0x00000000
-ASM_SIZE_DIRECTIVE(Constants_1_by_LN10)
+FR_NormX               = f7
+FR_RcpX                = f9
+FR_r                   = f10
+FR_r2                  = f11
+FR_r4                  = f12
+FR_N                   = f13
+FR_Ln2                 = f14
+FR_Xp1                 = f15
 
-FR_Input_X = f8 
-FR_Neg_One = f9
-FR_E       = f33
-FR_Em1     = f34
-FR_Y_hi    = f34  
-// Shared with Em1
-FR_Y_lo    = f35
-FR_Scale   = f36
-FR_X_Prime = f37 
-FR_Z       = f38 
-FR_S_hi    = f38  
-// Shared with Z  
-FR_W       = f39
-FR_G       = f40
-FR_wsq     = f40 
-// Shared with G 
-FR_H       = f41
-FR_w4      = f41
-// Shared with H  
-FR_h       = f42
-FR_w6      = f42  
-// Shared with h     
-FR_G_tmp   = f43
-FR_poly_lo = f43
-// Shared with G_tmp 
-FR_P8      = f43  
-// Shared with G_tmp 
-FR_H_tmp   = f44
-FR_poly_hi = f44
-  // Shared with H_tmp
-FR_P7      = f44  
-// Shared with H_tmp
-FR_h_tmp   = f45 
-FR_rsq     = f45  
-// Shared with h_tmp
-FR_P6      = f45
-// Shared with h_tmp
-FR_abs_W   = f46
-FR_r       = f46  
-// Shared with abs_W  
-FR_AA      = f47 
-FR_log2_hi = f47  
-// Shared with AA  
-FR_BB          = f48
-FR_log2_lo     = f48  
-// Shared with BB  
-FR_S_lo        = f49 
-FR_two_negN    = f50  
-FR_float_N     = f51 
-FR_Q4          = f52 
-FR_dummy       = f52  
-// Shared with Q4
-FR_P4          = f52  
-// Shared with Q4
-FR_Threshold    = f52
-// Shared with Q4
-FR_Q3          = f53  
-FR_P3          = f53  
-// Shared with Q3
-FR_Tiny        = f53  
-// Shared with Q3
-FR_Q2          = f54 
-FR_P2          = f54  
-// Shared with Q2
-FR_1LN10_hi     = f54 
-// Shared with Q2
-FR_Q1           = f55 
-FR_P1           = f55 
-// Shared with Q1 
-FR_1LN10_lo     = f55 
-// Shared with Q1 
-FR_P5           = f98 
-FR_SCALE        = f98 
-FR_Output_X_tmp = f99 
+FR_A4                  = f33
+FR_A3                  = f34
+FR_A2                  = f35
 
-GR_Expo_Range   = r32
-GR_Table_Base   = r34
-GR_Table_Base1  = r35
-GR_Table_ptr    = r36 
-GR_Index2       = r37 
-GR_signif       = r38 
-GR_X_0          = r39 
-GR_X_1          = r40 
-GR_X_2          = r41 
-GR_Z_1          = r42 
-GR_Z_2          = r43 
-GR_N            = r44 
-GR_Bias         = r45 
-GR_M            = r46 
-GR_ScaleN       = r47  
-GR_Index3       = r48 
-GR_Perturb      = r49 
-GR_Table_Scale  = r50 
+FR_T                   = f36
+FR_NxLn2pT             = f36
 
 
-GR_SAVE_PFS     = r51
-GR_SAVE_B0      = r52
-GR_SAVE_GP      = r53
 
-GR_Parameter_X       = r54
-GR_Parameter_Y       = r55
-GR_Parameter_RESULT  = r56
+FR_Y                   = f1
+FR_X                   = f10
+FR_RESULT              = f8
 
-GR_Parameter_TAG = r57 
 
+// Data
+//==============================================================
+RODATA
+.align 16
+
+LOCAL_OBJECT_START(log_data)
+// ln(1/frcpa(1+i/256)), i=0...255
+data8 0x3F60040155D5889E // 0
+data8 0x3F78121214586B54 // 1
+data8 0x3F841929F96832F0 // 2
+data8 0x3F8C317384C75F06 // 3
+data8 0x3F91A6B91AC73386 // 4
+data8 0x3F95BA9A5D9AC039 // 5
+data8 0x3F99D2A8074325F4 // 6
+data8 0x3F9D6B2725979802 // 7
+data8 0x3FA0C58FA19DFAAA // 8
+data8 0x3FA2954C78CBCE1B // 9
+data8 0x3FA4A94D2DA96C56 // 10
+data8 0x3FA67C94F2D4BB58 // 11
+data8 0x3FA85188B630F068 // 12
+data8 0x3FAA6B8ABE73AF4C // 13
+data8 0x3FAC441E06F72A9E // 14
+data8 0x3FAE1E6713606D07 // 15
+data8 0x3FAFFA6911AB9301 // 16
+data8 0x3FB0EC139C5DA601 // 17
+data8 0x3FB1DBD2643D190B // 18
+data8 0x3FB2CC7284FE5F1C // 19
+data8 0x3FB3BDF5A7D1EE64 // 20
+data8 0x3FB4B05D7AA012E0 // 21
+data8 0x3FB580DB7CEB5702 // 22
+data8 0x3FB674F089365A7A // 23
+data8 0x3FB769EF2C6B568D // 24
+data8 0x3FB85FD927506A48 // 25
+data8 0x3FB9335E5D594989 // 26
+data8 0x3FBA2B0220C8E5F5 // 27
+data8 0x3FBB0004AC1A86AC // 28
+data8 0x3FBBF968769FCA11 // 29
+data8 0x3FBCCFEDBFEE13A8 // 30
+data8 0x3FBDA727638446A2 // 31
+data8 0x3FBEA3257FE10F7A // 32
+data8 0x3FBF7BE9FEDBFDE6 // 33
+data8 0x3FC02AB352FF25F4 // 34
+data8 0x3FC097CE579D204D // 35
+data8 0x3FC1178E8227E47C // 36
+data8 0x3FC185747DBECF34 // 37
+data8 0x3FC1F3B925F25D41 // 38
+data8 0x3FC2625D1E6DDF57 // 39
+data8 0x3FC2D1610C86813A // 40
+data8 0x3FC340C59741142E // 41
+data8 0x3FC3B08B6757F2A9 // 42
+data8 0x3FC40DFB08378003 // 43
+data8 0x3FC47E74E8CA5F7C // 44
+data8 0x3FC4EF51F6466DE4 // 45
+data8 0x3FC56092E02BA516 // 46
+data8 0x3FC5D23857CD74D5 // 47
+data8 0x3FC6313A37335D76 // 48
+data8 0x3FC6A399DABBD383 // 49
+data8 0x3FC70337DD3CE41B // 50
+data8 0x3FC77654128F6127 // 51
+data8 0x3FC7E9D82A0B022D // 52
+data8 0x3FC84A6B759F512F // 53
+data8 0x3FC8AB47D5F5A310 // 54
+data8 0x3FC91FE49096581B // 55
+data8 0x3FC981634011AA75 // 56
+data8 0x3FC9F6C407089664 // 57
+data8 0x3FCA58E729348F43 // 58
+data8 0x3FCABB55C31693AD // 59
+data8 0x3FCB1E104919EFD0 // 60
+data8 0x3FCB94EE93E367CB // 61
+data8 0x3FCBF851C067555F // 62
+data8 0x3FCC5C0254BF23A6 // 63
+data8 0x3FCCC000C9DB3C52 // 64
+data8 0x3FCD244D99C85674 // 65
+data8 0x3FCD88E93FB2F450 // 66
+data8 0x3FCDEDD437EAEF01 // 67
+data8 0x3FCE530EFFE71012 // 68
+data8 0x3FCEB89A1648B971 // 69
+data8 0x3FCF1E75FADF9BDE // 70
+data8 0x3FCF84A32EAD7C35 // 71
+data8 0x3FCFEB2233EA07CD // 72
+data8 0x3FD028F9C7035C1C // 73
+data8 0x3FD05C8BE0D9635A // 74
+data8 0x3FD085EB8F8AE797 // 75
+data8 0x3FD0B9C8E32D1911 // 76
+data8 0x3FD0EDD060B78081 // 77
+data8 0x3FD122024CF0063F // 78
+data8 0x3FD14BE2927AECD4 // 79
+data8 0x3FD180618EF18ADF // 80
+data8 0x3FD1B50BBE2FC63B // 81
+data8 0x3FD1DF4CC7CF242D // 82
+data8 0x3FD214456D0EB8D4 // 83
+data8 0x3FD23EC5991EBA49 // 84
+data8 0x3FD2740D9F870AFB // 85
+data8 0x3FD29ECDABCDFA04 // 86
+data8 0x3FD2D46602ADCCEE // 87
+data8 0x3FD2FF66B04EA9D4 // 88
+data8 0x3FD335504B355A37 // 89
+data8 0x3FD360925EC44F5D // 90
+data8 0x3FD38BF1C3337E75 // 91
+data8 0x3FD3C25277333184 // 92
+data8 0x3FD3EDF463C1683E // 93
+data8 0x3FD419B423D5E8C7 // 94
+data8 0x3FD44591E0539F49 // 95
+data8 0x3FD47C9175B6F0AD // 96
+data8 0x3FD4A8B341552B09 // 97
+data8 0x3FD4D4F3908901A0 // 98
+data8 0x3FD501528DA1F968 // 99
+data8 0x3FD52DD06347D4F6 // 100
+data8 0x3FD55A6D3C7B8A8A // 101
+data8 0x3FD5925D2B112A59 // 102
+data8 0x3FD5BF406B543DB2 // 103
+data8 0x3FD5EC433D5C35AE // 104
+data8 0x3FD61965CDB02C1F // 105
+data8 0x3FD646A84935B2A2 // 106
+data8 0x3FD6740ADD31DE94 // 107
+data8 0x3FD6A18DB74A58C5 // 108
+data8 0x3FD6CF31058670EC // 109
+data8 0x3FD6F180E852F0BA // 110
+data8 0x3FD71F5D71B894F0 // 111
+data8 0x3FD74D5AEFD66D5C // 112
+data8 0x3FD77B79922BD37E // 113
+data8 0x3FD7A9B9889F19E2 // 114
+data8 0x3FD7D81B037EB6A6 // 115
+data8 0x3FD8069E33827231 // 116
+data8 0x3FD82996D3EF8BCB // 117
+data8 0x3FD85855776DCBFB // 118
+data8 0x3FD8873658327CCF // 119
+data8 0x3FD8AA75973AB8CF // 120
+data8 0x3FD8D992DC8824E5 // 121
+data8 0x3FD908D2EA7D9512 // 122
+data8 0x3FD92C59E79C0E56 // 123
+data8 0x3FD95BD750EE3ED3 // 124
+data8 0x3FD98B7811A3EE5B // 125
+data8 0x3FD9AF47F33D406C // 126
+data8 0x3FD9DF270C1914A8 // 127
+data8 0x3FDA0325ED14FDA4 // 128
+data8 0x3FDA33440224FA79 // 129
+data8 0x3FDA57725E80C383 // 130
+data8 0x3FDA87D0165DD199 // 131
+data8 0x3FDAAC2E6C03F896 // 132
+data8 0x3FDADCCC6FDF6A81 // 133
+data8 0x3FDB015B3EB1E790 // 134
+data8 0x3FDB323A3A635948 // 135
+data8 0x3FDB56FA04462909 // 136
+data8 0x3FDB881AA659BC93 // 137
+data8 0x3FDBAD0BEF3DB165 // 138
+data8 0x3FDBD21297781C2F // 139
+data8 0x3FDC039236F08819 // 140
+data8 0x3FDC28CB1E4D32FD // 141
+data8 0x3FDC4E19B84723C2 // 142
+data8 0x3FDC7FF9C74554C9 // 143
+data8 0x3FDCA57B64E9DB05 // 144
+data8 0x3FDCCB130A5CEBB0 // 145
+data8 0x3FDCF0C0D18F326F // 146
+data8 0x3FDD232075B5A201 // 147
+data8 0x3FDD490246DEFA6B // 148
+data8 0x3FDD6EFA918D25CD // 149
+data8 0x3FDD9509707AE52F // 150
+data8 0x3FDDBB2EFE92C554 // 151
+data8 0x3FDDEE2F3445E4AF // 152
+data8 0x3FDE148A1A2726CE // 153
+data8 0x3FDE3AFC0A49FF40 // 154
+data8 0x3FDE6185206D516E // 155
+data8 0x3FDE882578823D52 // 156
+data8 0x3FDEAEDD2EAC990C // 157
+data8 0x3FDED5AC5F436BE3 // 158
+data8 0x3FDEFC9326D16AB9 // 159
+data8 0x3FDF2391A2157600 // 160
+data8 0x3FDF4AA7EE03192D // 161
+data8 0x3FDF71D627C30BB0 // 162
+data8 0x3FDF991C6CB3B379 // 163
+data8 0x3FDFC07ADA69A910 // 164
+data8 0x3FDFE7F18EB03D3E // 165
+data8 0x3FE007C053C5002E // 166
+data8 0x3FE01B942198A5A1 // 167
+data8 0x3FE02F74400C64EB // 168
+data8 0x3FE04360BE7603AD // 169
+data8 0x3FE05759AC47FE34 // 170
+data8 0x3FE06B5F1911CF52 // 171
+data8 0x3FE078BF0533C568 // 172
+data8 0x3FE08CD9687E7B0E // 173
+data8 0x3FE0A10074CF9019 // 174
+data8 0x3FE0B5343A234477 // 175
+data8 0x3FE0C974C89431CE // 176
+data8 0x3FE0DDC2305B9886 // 177
+data8 0x3FE0EB524BAFC918 // 178
+data8 0x3FE0FFB54213A476 // 179
+data8 0x3FE114253DA97D9F // 180
+data8 0x3FE128A24F1D9AFF // 181
+data8 0x3FE1365252BF0865 // 182
+data8 0x3FE14AE558B4A92D // 183
+data8 0x3FE15F85A19C765B // 184
+data8 0x3FE16D4D38C119FA // 185
+data8 0x3FE18203C20DD133 // 186
+data8 0x3FE196C7BC4B1F3B // 187
+data8 0x3FE1A4A738B7A33C // 188
+data8 0x3FE1B981C0C9653D // 189
+data8 0x3FE1CE69E8BB106B // 190
+data8 0x3FE1DC619DE06944 // 191
+data8 0x3FE1F160A2AD0DA4 // 192
+data8 0x3FE2066D7740737E // 193
+data8 0x3FE2147DBA47A394 // 194
+data8 0x3FE229A1BC5EBAC3 // 195
+data8 0x3FE237C1841A502E // 196
+data8 0x3FE24CFCE6F80D9A // 197
+data8 0x3FE25B2C55CD5762 // 198
+data8 0x3FE2707F4D5F7C41 // 199
+data8 0x3FE285E0842CA384 // 200
+data8 0x3FE294294708B773 // 201
+data8 0x3FE2A9A2670AFF0C // 202
+data8 0x3FE2B7FB2C8D1CC1 // 203
+data8 0x3FE2C65A6395F5F5 // 204
+data8 0x3FE2DBF557B0DF43 // 205
+data8 0x3FE2EA64C3F97655 // 206
+data8 0x3FE3001823684D73 // 207
+data8 0x3FE30E97E9A8B5CD // 208
+data8 0x3FE32463EBDD34EA // 209
+data8 0x3FE332F4314AD796 // 210
+data8 0x3FE348D90E7464D0 // 211
+data8 0x3FE35779F8C43D6E // 212
+data8 0x3FE36621961A6A99 // 213
+data8 0x3FE37C299F3C366A // 214
+data8 0x3FE38AE2171976E7 // 215
+data8 0x3FE399A157A603E7 // 216
+data8 0x3FE3AFCCFE77B9D1 // 217
+data8 0x3FE3BE9D503533B5 // 218
+data8 0x3FE3CD7480B4A8A3 // 219
+data8 0x3FE3E3C43918F76C // 220
+data8 0x3FE3F2ACB27ED6C7 // 221
+data8 0x3FE4019C2125CA93 // 222
+data8 0x3FE4181061389722 // 223
+data8 0x3FE42711518DF545 // 224
+data8 0x3FE436194E12B6BF // 225
+data8 0x3FE445285D68EA69 // 226
+data8 0x3FE45BCC464C893A // 227
+data8 0x3FE46AED21F117FC // 228
+data8 0x3FE47A1527E8A2D3 // 229
+data8 0x3FE489445EFFFCCC // 230
+data8 0x3FE4A018BCB69835 // 231
+data8 0x3FE4AF5A0C9D65D7 // 232
+data8 0x3FE4BEA2A5BDBE87 // 233
+data8 0x3FE4CDF28F10AC46 // 234
+data8 0x3FE4DD49CF994058 // 235
+data8 0x3FE4ECA86E64A684 // 236
+data8 0x3FE503C43CD8EB68 // 237
+data8 0x3FE513356667FC57 // 238
+data8 0x3FE522AE0738A3D8 // 239
+data8 0x3FE5322E26867857 // 240
+data8 0x3FE541B5CB979809 // 241
+data8 0x3FE55144FDBCBD62 // 242
+data8 0x3FE560DBC45153C7 // 243
+data8 0x3FE5707A26BB8C66 // 244
+data8 0x3FE587F60ED5B900 // 245
+data8 0x3FE597A7977C8F31 // 246
+data8 0x3FE5A760D634BB8B // 247
+data8 0x3FE5B721D295F10F // 248
+data8 0x3FE5C6EA94431EF9 // 249
+data8 0x3FE5D6BB22EA86F6 // 250
+data8 0x3FE5E6938645D390 // 251
+data8 0x3FE5F673C61A2ED2 // 252
+data8 0x3FE6065BEA385926 // 253
+data8 0x3FE6164BFA7CC06B // 254
+data8 0x3FE62643FECF9743 // 255
+LOCAL_OBJECT_END(log_data)
+
+
+// Code
+//==============================================================
 
 .section .text
-.proc log1pf#
-.global log1pf#
-.align 64 
-log1pf:
-#ifdef _LIBC
-.global __log1pf
-__log1pf:
-#endif
-
-{ .mfi
-alloc r32 = ar.pfs,0,22,4,0
-(p0)  fsub.s1 FR_Neg_One = f0,f1 
-(p0)  cmp.eq.unc  p7, p0 = r0, r0 
-}
-
+GLOBAL_IEEE754_ENTRY(log1pf)
 { .mfi
-(p0)  cmp.ne.unc  p14, p0 = r0, r0 
-(p0)  fnorm.s1 FR_X_Prime = FR_Input_X 
-(p0)  cmp.eq.unc  p15, p0 = r0, r0 ;; 
+      getf.exp      GR_signexp_x = f8 // if x is unorm then must recompute
+      fadd.s1       FR_Xp1 = f8, f1       // Form 1+x
+      mov           GR_05 = 0xfffe
 }
-
-{ .mfi
-      nop.m 999
-(p0)  fclass.m.unc p6, p0 =  FR_Input_X, 0x1E3 
-      nop.i 999
+{ .mlx
+      addl          GR_ad_T = @ltoff(log_data),gp
+      movl          GR_A3 = 0x3fd5555555555555 // double precision memory
+                                               // representation of A3
 }
 ;;
 
 { .mfi
-	nop.m 999
-(p0)  fclass.nm.unc p10, p0 =  FR_Input_X, 0x1FF 
-      nop.i 999
+      ld8           GR_ad_T = [GR_ad_T]
+      fclass.m      p8,p0 = f8,0xb // Is x unorm?
+      mov           GR_exp_mask = 0x1ffff
 }
-;;
-
 { .mfi
-	nop.m 999
-(p0)  fcmp.eq.unc.s1 p9, p0 =  FR_Input_X, f0 
-      nop.i 999
+      mov           GR_025 = 0xfffd            // Exponent of 0.25
+      fnorm.s1      FR_NormX = f8              // Normalize x
+      mov           GR_exp_bias = 0xffff
 }
+;;
 
 { .mfi
-	nop.m 999
-(p0)  fadd FR_Em1 = f0,f0 
-	nop.i 999 ;;
+      setf.exp      FR_A2 = GR_05 // create A2 = 0.5
+      fclass.m      p9,p0 = f8,0x1E1 // is x NaN, NaT or +Inf?
+      nop.i         0
 }
-
-{ .mfi
-	nop.m 999
-(p0)  fadd FR_E = f0,f1 
-	nop.i 999 ;;
+{ .mib
+      setf.d        FR_A3 = GR_A3 // create A3
+      nop.i         0
+(p8)  br.cond.spnt  log1p_unorm          // Branch if x=unorm
 }
+;;
 
+log1p_common:
 { .mfi
-	nop.m 999
-(p0)  fcmp.eq.unc.s1 p8, p0 =  FR_Input_X, FR_Neg_One 
-	nop.i 999
+      setf.exp      FR_A4 = GR_025 // create A4 = 0.25
+      frcpa.s1      FR_RcpX,p0 = f1,FR_Xp1
+      nop.i         0
 }
-
-{ .mfi
-	nop.m 999
-(p0)  fcmp.lt.unc.s1 p13, p0 =  FR_Input_X, FR_Neg_One 
-	nop.i 999
+{ .mfb
+      nop.m         0
+(p9)  fma.s.s0      f8 = f8,f1,f0 // set V-flag
+(p9)  br.ret.spnt   b0 // exit for NaN, NaT and +Inf
 }
-
-
-L(LOG_BEGIN): 
+;;
 
 { .mfi
-	nop.m 999
-(p0)  fadd.s1 FR_Z = FR_X_Prime, FR_E 
-	nop.i 999
+      getf.exp      GR_Exp = FR_Xp1            // signexp of x+1
+      fclass.m      p10,p0 = FR_Xp1,0x3A // is 1+x < 0?
+      and           GR_exp_x = GR_exp_mask, GR_signexp_x // biased exponent of x
 }
-
 { .mlx
-	nop.m 999
-(p0)  movl GR_Table_Scale = 0x0000000000000018 ;; 
-}
-
-{ .mmi
-	nop.m 999
-//     
-//    Create E = 1 and Em1 = 0 
-//    Check for X == 0, meaning log(1+0)
-//    Check for X < -1, meaning log(negative)
-//    Check for X == -1, meaning log(0)
-//    Normalize x 
-//    Identify NatVals, NaNs, Infs. 
-//    Identify EM unsupporteds. 
-//    Identify Negative values - us S1 so as
-//    not to raise denormal operand exception 
-//    Set p15 to true for log1pf
-//    Set p14 to false for log1pf
-//    Set p7 true for log and log1pf
-//    
-(p0)  addl GR_Table_Base = @ltoff(Constants_Z_G_H_h1#),gp
-      nop.i  999
+      nop.m         0
+      movl          GR_Ln2 = 0x3FE62E42FEFA39EF // double precision memory
+                                                // representation of log(2)
 }
+;;
 
 { .mfi
-	nop.m 999
-(p0)  fmax.s1 FR_AA = FR_X_Prime, FR_E 
-	nop.i 999 ;;
+      getf.sig      GR_Sig = FR_Xp1 // get significand to calculate index
+                                    // for T if |x| >= 2^-8
+      fcmp.eq.s1    p12,p0 = f8,f0     // is x equal to 0?
+      sub           GR_exp_x = GR_exp_x, GR_exp_bias // true exponent of x
 }
+;;
 
 { .mfi
-      ld8    GR_Table_Base = [GR_Table_Base]
-(p0)  fmin.s1 FR_BB = FR_X_Prime, FR_E 
-	nop.i 999
+      sub           GR_N = GR_Exp,GR_exp_bias // true exponent of x+1
+      fcmp.eq.s1    p11,p0 = FR_Xp1,f0     // is x = -1?
+      cmp.gt        p6,p7 = -8, GR_exp_x  // Is |x| < 2^-8
 }
-
 { .mfb
-	nop.m 999
-(p0)  fadd.s1 FR_W = FR_X_Prime, FR_Em1 
-//     
-//    Begin load of constants base
-//    FR_Z = Z = |x| + E 
-//    FR_W = W = |x| + Em1
-//    AA = fmax(|x|,E)
-//    BB = fmin(|x|,E)
-//
-(p6)  br.cond.spnt L(LOG_64_special) ;; 
-}
-
-{ .mib
-	nop.m 999
-	nop.i 999
-(p10) br.cond.spnt L(LOG_64_unsupported) ;; 
-}
-
-{ .mib
-	nop.m 999
-	nop.i 999
-(p13) br.cond.spnt L(LOG_64_negative) ;; 
-}
-
-{ .mib
-(p0)  getf.sig GR_signif = FR_Z 
-	nop.i 999
-(p9)  br.cond.spnt L(LOG_64_one) ;; 
-}
-
-{ .mib
-	nop.m 999
-	nop.i 999
-(p8)  br.cond.spnt L(LOG_64_zero) ;; 
-}
-
-{ .mfi
-(p0)  getf.exp GR_N =  FR_Z 
-//   
-//    Raise possible denormal operand exception 
-//    Create Bias
-// 
-//    This function computes ln( x + e ) 
-//    Input  FR 1: FR_X   = FR_Input_X          
-//    Input  FR 2: FR_E   = FR_E
-//    Input  FR 3: FR_Em1 = FR_Em1 
-//    Input  GR 1: GR_Expo_Range = GR_Expo_Range = 1
-//    Output FR 4: FR_Y_hi  
-//    Output FR 5: FR_Y_lo  
-//    Output FR 6: FR_Scale  
-//    Output PR 7: PR_Safe  
-//
-(p0)  fsub.s1 FR_S_lo = FR_AA, FR_Z 
-//
-//    signif = getf.sig(Z)
-//    abs_W = fabs(w)
-//
-(p0)  extr.u GR_Table_ptr = GR_signif, 59, 4 ;; 
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fmerge.se FR_S_hi =  f1,FR_Z 
-(p0)  extr.u GR_X_0 = GR_signif, 49, 15  
-}
-
-{ .mmi
-      nop.m 999
-(p0)  addl GR_Table_Base1 = @ltoff(Constants_Z_G_H_h2#),gp  
-      nop.i 999
+      nop.m         0
+      nop.f         0
+(p10) br.cond.spnt  log1p_lt_minus_1   // jump if x < -1
 }
 ;;
 
-{ .mlx
-      ld8    GR_Table_Base1 = [GR_Table_Base1]
-(p0)  movl GR_Bias = 0x000000000000FFFF ;; 
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fabs FR_abs_W =  FR_W 
-(p0)  pmpyshr2.u GR_Table_ptr = GR_Table_ptr,GR_Table_Scale,0 
-}
-
-{ .mfi
-	nop.m 999
-//    
-//    Branch out for special input values 
-//    
-(p0)  fcmp.lt.unc.s0 p8, p0 =  FR_Input_X, f0 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-//
-//    X_0 = extr.u(signif,49,15)
-//    Index1 = extr.u(signif,59,4)
-//
-(p0)  fadd.s1 FR_S_lo = FR_S_lo, FR_BB 
-	nop.i 999 ;;
-}
-
-{ .mii
-	nop.m 999
-	nop.i 999 ;;
-//
-//    Offset_to_Z1 = 24 * Index1
-//    For performance, don't use result
-//    for 3 or 4 cycles.
-//
-(p0)  add GR_Table_ptr = GR_Table_ptr, GR_Table_Base ;; 
-}
-//
-//    Add Base to Offset for Z1
-//    Create Bias
-
-{ .mmi
-(p0)  ld4 GR_Z_1 = [GR_Table_ptr],4 ;; 
-(p0)  ldfs  FR_G = [GR_Table_ptr],4 
-	nop.i 999 ;;
-}
-
-{ .mmi
-(p0)  ldfs  FR_H = [GR_Table_ptr],8 ;; 
-(p0)  ldfd  FR_h = [GR_Table_ptr],0 
-(p0)  pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 
-}
-//
-//    Load Z_1 
-//    Get Base of Table2 
-//
-
+// p6 is true if |x| < 1/256
+// p7 is true if |x| >= 1/256
+.pred.rel "mutex",p6,p7
 { .mfi
-(p0)  getf.exp GR_M = FR_abs_W 
-	nop.f 999
-	nop.i 999 ;;
-}
-
-{ .mii
-	nop.m 999
-	nop.i 999 ;;
-//
-//    M = getf.exp(abs_W)
-//    S_lo = AA - Z
-//    X_1 = pmpyshr2(X_0,Z_1,15)
-//
-(p0)  sub GR_M = GR_M, GR_Bias ;; 
+      nop.m         0
+(p6)  fms.s1        FR_r = f8,f1,f0 // range reduction for |x|<1/256
+(p6)  cmp.gt.unc    p10,p0 = -40, GR_exp_x  // Is |x| < 2^-40
 }
-//     
-//    M = M - Bias
-//    Load G1
-//    N = getf.exp(Z)
-//
-
-{ .mii
-(p0)  cmp.gt.unc  p11, p0 =  -80, GR_M 
-(p0)  cmp.gt.unc  p12, p0 =  -7, GR_M ;; 
-(p0)  extr.u GR_Index2 = GR_X_1, 6, 4 ;; 
-}
-
-{ .mib
-	nop.m 999
-//
-//    if -80 > M, set p11
-//    Index2 = extr.u(X_1,6,4)
-//    if -7  > M, set p12
-//    Load H1
-//
-(p0)  pmpyshr2.u GR_Index2 = GR_Index2,GR_Table_Scale,0 
-(p11) br.cond.spnt L(log1pf_small) ;; 
+{ .mfb
+(p7)  setf.sig      FR_N = GR_N // copy unbiased exponent of x to the
+                                // significand field of FR_N
+(p7)  fms.s1        FR_r = FR_RcpX,FR_Xp1,f1 // range reduction for |x|>=1/256
+(p12) br.ret.spnt   b0 // exit for x=0, return x
 }
+;;
 
 { .mib
-      nop.m 999
-	nop.i 999
-(p12) br.cond.spnt L(log1pf_near) ;; 
-}
-
-{ .mii
-(p0)  sub GR_N = GR_N, GR_Bias 
-//
-//    poly_lo = r * poly_lo 
-//
-(p0)  add GR_Perturb = 0x1, r0 ;; 
-(p0)  sub GR_ScaleN = GR_Bias, GR_N  
-}
-
-{ .mii
-(p0)  setf.sig FR_float_N = GR_N 
-	nop.i 999 ;;
-//
-//    Prepare Index2 - pmpyshr2.u(X_1,Z_2,15)
-//    Load h1
-//    S_lo = S_lo + BB 
-//    Branch for -80 > M
-//   
-(p0)  add GR_Index2 = GR_Index2, GR_Table_Base1
-}
-
-{ .mmi
-(p0)  setf.exp FR_two_negN = GR_ScaleN 
-      nop.m 999
-(p0)  addl GR_Table_Base = @ltoff(Constants_Z_G_H_h3#),gp  
-};;
-
-//
-//    Index2 points to Z2
-//    Branch for -7 > M
-//
-
-{ .mmb
-(p0)  ld4 GR_Z_2 = [GR_Index2],4 
-      ld8 GR_Table_Base = [GR_Table_Base]
-      nop.b 999 ;;
-}
-(p0)  nop.i 999
-//
-//    Load Z_2
-//    N = N - Bias
-//    Tablebase points to Table3
-//
-
-{ .mmi
-(p0)  ldfs  FR_G_tmp = [GR_Index2],4 ;; 
-//
-//    Load G_2
-//    pmpyshr2  X_2= (X_1,Z_2,15)
-//    float_N = setf.sig(N)
-//    ScaleN = Bias - N
-//
-(p0)  ldfs  FR_H_tmp = [GR_Index2],8 
-	nop.i 999 ;;
-}
-//
-//    Load H_2
-//    two_negN = setf.exp(scaleN)
-//    G = G_1 * G_2
-//
-
-{ .mfi
-(p0)  ldfd  FR_h_tmp = [GR_Index2],0 
-	nop.f 999
-(p0)  pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 ;; 
-}
-
-{ .mii
-	nop.m 999
-(p0)  extr.u GR_Index3 = GR_X_2, 1, 5 ;; 
-//
-//    Load h_2
-//    H = H_1 + H_2 
-//    h = h_1 + h_2 
-//    Index3 = extr.u(X_2,1,5)
-//
-(p0)  shladd GR_Index3 = GR_Index3,4,GR_Table_Base 
-}
-
-{ .mmi
-	nop.m 999
-	nop.m 999
-//
-//    float_N = fcvt.xf(float_N)
-//    load G3
-//
-(p0)  addl GR_Table_Base = @ltoff(Constants_Q#),gp ;; 
-}
-
-{ .mfi
-ld8    GR_Table_Base = [GR_Table_Base]
-nop.f 999
-nop.i 999
-} ;;
-
-{ .mfi
-(p0)  ldfe FR_log2_hi = [GR_Table_Base],16 
-(p0)  fmpy.s1 FR_S_lo = FR_S_lo, FR_two_negN 
-	nop.i 999 ;;
-}
-
-{ .mmf
-	nop.m 999
-//
-//    G = G3 * G
-//    Load h3
-//    Load log2_hi
-//    H = H + H3
-//
-(p0)  ldfe FR_log2_lo = [GR_Table_Base],16 
-(p0)  fmpy.s1 FR_G = FR_G, FR_G_tmp ;; 
-}
-
-{ .mmf
-(p0)  ldfs  FR_G_tmp = [GR_Index3],4 
-//
-//    h = h + h3
-//    r = G * S_hi + 1 
-//    Load log2_lo
-//
-(p0)  ldfe FR_Q4 = [GR_Table_Base],16 
-(p0)  fadd.s1 FR_h = FR_h, FR_h_tmp ;; 
-}
-
-{ .mfi
-(p0)  ldfe FR_Q3 = [GR_Table_Base],16 
-(p0)  fadd.s1 FR_H = FR_H, FR_H_tmp 
-	nop.i 999 ;;
-}
-
-{ .mmf
-(p0)  ldfs  FR_H_tmp = [GR_Index3],4 
-(p0)  ldfe FR_Q2 = [GR_Table_Base],16 
-//
-//    Comput Index for Table3
-//    S_lo = S_lo * two_negN
-//
-(p0)  fcvt.xf FR_float_N = FR_float_N ;; 
+      setf.d        FR_Ln2 = GR_Ln2 // create log(2)
+(p7)  extr.u        GR_Ind = GR_Sig,55,8 // get bits from 55 to 62 as index
+(p11) br.cond.spnt  log1p_eq_minus_1 // jump if x = -1
 }
-//
-//    If S_lo == 0, set p8 false
-//    Load H3
-//    Load ptr to table of polynomial coeff.
-//
+;;
 
 { .mmf
-(p0)  ldfd  FR_h_tmp = [GR_Index3],0 
-(p0)  ldfe FR_Q1 = [GR_Table_Base],0 
-(p0)  fcmp.eq.unc.s1 p0, p8 =  FR_S_lo, f0 ;; 
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fmpy.s1 FR_G = FR_G, FR_G_tmp 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fadd.s1 FR_H = FR_H, FR_H_tmp 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fms.s1 FR_r = FR_G, FR_S_hi, f1 
-	nop.i 999
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fadd.s1 FR_h = FR_h, FR_h_tmp 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-//
-//    Load Q4 
-//    Load Q3 
-//    Load Q2 
-//    Load Q1 
-//
-(p8) fma.s1 FR_r = FR_G, FR_S_lo, FR_r 
-	nop.i 999
-}
-
-{ .mfi
-	nop.m 999
-//
-//    poly_lo = r * Q4 + Q3
-//    rsq = r* r
-//
-(p0)  fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-//
-//    If (S_lo!=0) r = s_lo * G + r
-//
-(p0)  fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 
-	nop.i 999
-}
-//
-//    Create a 0x00000....01
-//    poly_lo = poly_lo * rsq + h
-//
-
-{ .mfi
-(p0)  setf.sig FR_dummy = GR_Perturb 
-(p0)  fmpy.s1 FR_rsq = FR_r, FR_r 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-//
-//    h = N * log2_lo + h 
-//    Y_hi = n * log2_hi + H 
-//
-(p0)  fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 
-	nop.i 999
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-//
-//    poly_lo = r * poly_o + Q2 
-//    poly_hi = Q1 * rsq + r 
-//
-(p0)  fmpy.s1 FR_poly_lo = FR_poly_lo, FR_r 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fma.s1 FR_poly_lo = FR_poly_lo, FR_rsq, FR_h 
-	nop.i 999 ;;
-}
-
-{ .mfb
-	nop.m 999
-(p0)  fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo 
-//
-//    Create the FR for a binary "or"
-//    Y_lo = poly_hi + poly_lo
-//
-// (p0)  for FR_dummy = FR_Y_lo,FR_dummy ;;
-//
-//    Turn the lsb of Y_lo ON
-//
-// (p0)  fmerge.se FR_Y_lo =  FR_Y_lo,FR_dummy ;;
-//
-//    Merge the new lsb into Y_lo, for alone doesn't
-//
-(p0)  br.cond.sptk L(LOG_main) ;; 
-}
-
-
-L(log1pf_near): 
-
-{ .mmi
-	nop.m 999
-	nop.m 999
-//    /*******************************************************/
-//    /*********** Branch log1pf_near  ************************/
-//    /*******************************************************/
-(p0)  addl GR_Table_Base = @ltoff(Constants_P#),gp ;; 
-}
-//
-//    Load base address of poly. coeff.
-//
-{.mmi
-      nop.m 999
-      ld8    GR_Table_Base = [GR_Table_Base]
-      nop.i 999
-};;
-
-{ .mmb
-(p0)  add GR_Table_ptr = 0x40,GR_Table_Base  
-//
-//    Address tables with separate pointers 
-//
-(p0)  ldfe FR_P8 = [GR_Table_Base],16 
-	nop.b 999 ;;
+(p7)  shladd        GR_ad_T = GR_Ind,3,GR_ad_T // address of T
+      nop.m         0
+(p10) fnma.s.s0     f8 = f8,f8,f8   // If |x| very small, result=x-x*x
 }
+;;
 
 { .mmb
-(p0)  ldfe FR_P4 = [GR_Table_ptr],16 
-//
-//    Load P4
-//    Load P8
-//
-(p0)  ldfe FR_P7 = [GR_Table_Base],16 
-	nop.b 999 ;;
-}
-
-{ .mmf
-(p0)  ldfe FR_P3 = [GR_Table_ptr],16 
-//
-//    Load P3
-//    Load P7
-//
-(p0)  ldfe FR_P6 = [GR_Table_Base],16 
-(p0)  fmpy.s1 FR_wsq = FR_W, FR_W ;; 
-}
-
-{ .mfi
-(p0)  ldfe FR_P2 = [GR_Table_ptr],16 
-	nop.f 999
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fma.s1 FR_Y_hi = FR_W, FR_P4, FR_P3 
-	nop.i 999
-}
-//
-//    Load P2
-//    Load P6
-//    Wsq = w * w
-//    Y_hi = p4 * w + p3
-//
-
-{ .mfi
-(p0)  ldfe FR_P5 = [GR_Table_Base],16 
-(p0)  fma.s1 FR_Y_lo = FR_W, FR_P8, FR_P7 
-	nop.i 999 ;;
+(p7)  ldfd          FR_T = [GR_ad_T]
+      nop.m         0
+(p10) br.ret.spnt   b0              // Exit if |x| < 2^-40
 }
+;;
 
 { .mfi
-(p0)  ldfe FR_P1 = [GR_Table_ptr],16 
-//
-//    Load P1
-//    Load P5
-//    Y_lo = p8 * w + P7
-//
-(p0)  fmpy.s1 FR_w4 = FR_wsq, FR_wsq 
-	nop.i 999 ;;
+      nop.m         0
+      fma.s1        FR_r2 = FR_r,FR_r,f0 // r^2
+      nop.i         0
 }
-
 { .mfi
-	nop.m 999
-(p0)  fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P2 
-	nop.i 999
+      nop.m         0
+      fnma.s1       FR_A2 = FR_A2,FR_r,f1      // 1.0 - A2*r
+      nop.i         0
 }
+;;
 
 { .mfi
-	nop.m 999
-(p0)  fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P6 
-(p0)  add GR_Perturb = 0x1, r0 ;; 
+      nop.m         0
+      fnma.s1       FR_A3 = FR_A4,FR_r,FR_A3 // A3 - A4*r
+      nop.i         0
 }
+;;
 
 { .mfi
-	nop.m 999
-//
-//    w4 = w2 * w2 
-//    Y_hi = y_hi * w + p2 
-//    Y_lo = y_lo * w + p6 
-//    Create perturbation bit
-//
-(p0)  fmpy.s1 FR_w6 = FR_w4, FR_wsq 
-	nop.i 999 ;;
+      nop.m         0
+(p7)  fcvt.xf       FR_N = FR_N
+      nop.i         0
 }
+;;
 
 { .mfi
-	nop.m 999
-(p0)  fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P1 
-	nop.i 999
+      nop.m         0
+      // (A3*r+A2)*r^2+r
+      fma.s1        FR_A2 = FR_A3,FR_r2,FR_A2 // (A4*r+A3)*r^2+(A2*r+1)
+      nop.i         0
 }
-//
-//    Y_hi = y_hi * w + p1 
-//    w6 = w4 * w2 
-//
+;;
 
 { .mfi
-(p0)  setf.sig FR_Q4 = GR_Perturb 
-(p0)  fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P5 
-	nop.i 999 ;;
+      nop.m         0
+      // N*Ln2hi+T
+(p7)  fma.s1        FR_NxLn2pT = FR_N,FR_Ln2,FR_T
+      nop.i         0
 }
+;;
 
+.pred.rel "mutex",p6,p7
 { .mfi
-	nop.m 999
-(p0)  fma.s1 FR_Y_hi = FR_wsq,FR_Y_hi, FR_W 
-	nop.i 999
+      nop.m         0
+(p6)  fma.s.s0      f8 = FR_A2,FR_r,f0 // result if 2^(-40) <= |x| < 1/256
+      nop.i         0
 }
-
 { .mfb
-	nop.m 999
-//
-//    Y_hi = y_hi * wsq + w 
-//    Y_lo = y_lo * w + p5 
-//
-(p0)  fmpy.s1 FR_Y_lo = FR_w6, FR_Y_lo 
-//
-//    Y_lo = y_lo * w6  
-//
-// (p0)  for FR_dummy = FR_Y_lo,FR_dummy ;;
-//
-//    Set lsb on: Taken out to improve performance 
-//
-// (p0)  fmerge.se FR_Y_lo =  FR_Y_lo,FR_dummy ;;
-//
-//    Make sure it's on in Y_lo also.  Taken out to improve
-//    performance
-//
-(p0)  br.cond.sptk L(LOG_main) ;; 
-}
-
-
-L(log1pf_small): 
-
-{ .mmi
-	nop.m 999
-	nop.m 999
-//  /*******************************************************/
-//  /*********** Branch log1pf_small  ***********************/
-//  /*******************************************************/
-(p0)  addl GR_Table_Base = @ltoff(Constants_Threshold#),gp 
-}
-
-{ .mfi
-	nop.m 999
-(p0)  mov FR_Em1 = FR_W 
-(p0)  cmp.eq.unc  p7, p0 = r0, r0 ;; 
-}
-
-{ .mlx
-      ld8    GR_Table_Base = [GR_Table_Base]
-(p0)  movl GR_Expo_Range = 0x0000000000000002 ;; 
-}
-//
-//    Set Safe to true
-//    Set Expo_Range = 0 for single
-//    Set Expo_Range = 2 for double 
-//    Set Expo_Range = 4 for double-extended 
-//
-
-{ .mmi
-(p0)  shladd GR_Table_Base = GR_Expo_Range,4,GR_Table_Base ;; 
-(p0)  ldfe FR_Threshold = [GR_Table_Base],16 
-	nop.i 999
-}
-
-{ .mlx
-	nop.m 999
-(p0)  movl GR_Bias = 0x000000000000FF9B ;; 
-}
-
-{ .mfi
-(p0)  ldfe FR_Tiny = [GR_Table_Base],0 
-	nop.f 999
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-(p0)  fcmp.gt.unc.s1 p13, p12 =  FR_abs_W, FR_Threshold 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-(p13) fnmpy.s1 FR_Y_lo = FR_W, FR_W 
-	nop.i 999
-}
-
-{ .mfi
-	nop.m 999
-(p13) fadd FR_SCALE = f0, f1 
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-(p12) fsub.s1 FR_Y_lo = f0, FR_Tiny 
-(p12) cmp.ne.unc  p7, p0 = r0, r0 
-}
-
-{ .mfi
-(p12) setf.exp FR_SCALE = GR_Bias 
-	nop.f 999
-	nop.i 999 ;;
+      nop.m         0
+(p7)  fma.s.s0      f8 = FR_A2,FR_r,FR_NxLn2pT  // result if |x| >= 1/256
+      br.ret.sptk   b0                          // Exit if |x| >= 2^(-40)
 }
+;;
 
-//
-//    Set p7 to SAFE = FALSE
-//    Set Scale = 2^-100 
-//
+.align 32
+log1p_unorm:
+// Here if x=unorm
 { .mfb
-	nop.m 999
-(p0)  fma.s.s0 FR_Input_X = FR_Y_lo,FR_SCALE,FR_Y_hi
-(p0)  br.ret.sptk   b0
+      getf.exp      GR_signexp_x = FR_NormX // recompute biased exponent
+      nop.f         0
+      br.cond.sptk  log1p_common
 }
 ;;
 
-L(LOG_64_one): 
-
-{ .mfb
-	nop.m 999
-(p0)  fmpy.s.s0 FR_Input_X = FR_Input_X, f0 
-(p0)  br.ret.sptk   b0
+.align 32
+log1p_eq_minus_1:
+// Here if x=-1
+{ .mfi
+      nop.m         0
+      fmerge.s      FR_X = f8,f8 // keep input argument for subsequent
+                                 // call of __libm_error_support#
+      nop.i         0
 }
 ;;
-//    
-//    Raise divide by zero for +/-0 input.
-//    
-
-L(LOG_64_zero): 
 
 { .mfi
-(p0)  mov   GR_Parameter_TAG = 142 
-//
-//    If we have log1pf(0), return -Inf.
-//  
-(p0)  fsub.s0 FR_Output_X_tmp = f0, f1 
-      nop.i 999 ;;
+      mov           GR_TAG = 142  // set libm error in case of log1p(-1).
+      frcpa.s0      f8,p0 = f8,f0 // log1p(-1) should be equal to -INF.
+                                      // We can get it using frcpa because it
+                                      // sets result to the IEEE-754 mandated
+                                      // quotient of f8/f0.
+      nop.i         0
 }
-{ .mfb
-      nop.m 999
-(p0)  frcpa.s0 FR_Output_X_tmp, p8 =  FR_Output_X_tmp, f0 
-(p0)  br.cond.sptk L(LOG_ERROR_Support) ;; 
+{ .mib
+      nop.m         0
+      nop.i         0
+      br.cond.sptk  log_libm_err
 }
+;;
 
-L(LOG_64_special): 
-
+.align 32
+log1p_lt_minus_1:
+// Here if x < -1
 { .mfi
-      nop.m 999
-//    
-//    Return -Inf or value from handler.
-//    
-(p0)  fclass.m.unc p7, p0 =  FR_Input_X, 0x1E1 
-      nop.i 999 ;;
-}
-
-{ .mfb
-      nop.m 999
-//     
-//    Check for Natval, QNan, SNaN, +Inf   
-//    
-(p7)  fmpy.s.s0  f8 =  FR_Input_X, f1 
-//     
-//    For SNaN raise invalid and return QNaN.
-//    For QNaN raise invalid and return QNaN.
-//    For +Inf return +Inf.
-//    
-(p7)  br.ret.sptk   b0
+      nop.m         0
+      fmerge.s      FR_X = f8,f8
+      nop.i         0
 }
 ;;
 
-//    
-//    For -Inf raise invalid and return QNaN.
-//    
-
-{ .mfb
-(p0)  mov   GR_Parameter_TAG = 143 
-(p0)  fmpy.s.s0  FR_Output_X_tmp =  FR_Input_X, f0 
-(p0)  br.cond.sptk L(LOG_ERROR_Support) ;; 
+{ .mfi
+      mov           GR_TAG = 143  // set libm error in case of x < -1.
+      frcpa.s0      f8,p0 = f0,f0 // log1p(x) x < -1 should be equal to NaN.
+                                  // We can get it using frcpa because it
+                                  // sets result to the IEEE-754 mandated
+                                  // quotient of f0/f0 i.e. NaN.
+      nop.i         0
 }
+;;
 
-//
-//    Report that log1pf(-Inf) computed
-//     
-
-L(LOG_64_unsupported): 
-
-//    
-//    Return generated NaN or other value .
-//    
-
-{ .mfb
-      nop.m 999
-(p0)  fmpy.s.s0 FR_Input_X = FR_Input_X, f0 
-(p0)  br.ret.sptk   b0 ;;
+.align 32
+log_libm_err:
+{ .mmi
+      alloc         r32 = ar.pfs,1,4,4,0
+      mov           GR_Parameter_TAG = GR_TAG
+      nop.i         0
 }
+;;
 
-L(LOG_64_negative): 
-
-{ .mfi
-      nop.m 999
-//     
-//    Deal with x < 0 in a special way 
-//    
-(p0)  frcpa.s0 FR_Output_X_tmp, p8 =  f0, f0 
-//     
-//    Deal with x < 0 in a special way - raise
-//    invalid and produce QNaN indefinite.
-//    
-(p0)  mov   GR_Parameter_TAG = 143;;
-}
+GLOBAL_IEEE754_END(log1pf)
 
-.endp log1pf#
-ASM_SIZE_DIRECTIVE(log1pf)
 
-.proc __libm_error_region
-__libm_error_region:
-L(LOG_ERROR_Support): 
+LOCAL_LIBM_ENTRY(__libm_error_region)
 .prologue
-
-// (1)
 { .mfi
-        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
+        add   GR_Parameter_Y = -32,sp         // Parameter 2 value
         nop.f 0
 .save   ar.pfs,GR_SAVE_PFS
-        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
+        mov  GR_SAVE_PFS = ar.pfs             // Save ar.pfs
 }
 { .mfi
 .fframe 64
-        add sp=-64,sp                          // Create new stack
+        add sp = -64,sp                       // Create new stack
         nop.f 0
-        mov GR_SAVE_GP=gp                      // Save gp
+        mov GR_SAVE_GP = gp                   // Save gp
 };;
-
-
-// (2)
 { .mmi
-        stfs [GR_Parameter_Y] = f0,16         // STORE Parameter 2 on stack
+        stfs [GR_Parameter_Y] = FR_Y,16       // STORE Parameter 2 on stack
         add GR_Parameter_X = 16,sp            // Parameter 1 address
 .save   b0, GR_SAVE_B0
-        mov GR_SAVE_B0=b0                     // Save b0
+        mov GR_SAVE_B0 = b0                   // Save b0
 };;
-
 .body
-// (3)
 { .mib
-        stfs [GR_Parameter_X] =FR_Input_X               // STORE Parameter 1 on stack
-        add   GR_Parameter_RESULT = 0,GR_Parameter_Y    // Parameter 3 address
-        nop.b 0                                      
+        stfs [GR_Parameter_X] = FR_X          // STORE Parameter 1 on stack
+        add   GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+        nop.b 0
 }
 { .mib
-        stfs [GR_Parameter_Y] = FR_Output_X_tmp         // STORE Parameter 3 on stack
+        stfs [GR_Parameter_Y] = FR_RESULT     // STORE Parameter 3 on stack
         add   GR_Parameter_Y = -16,GR_Parameter_Y
-        br.call.sptk b0=__libm_error_support#           // Call error handling function
+        br.call.sptk b0=__libm_error_support# // Call error handling function
 };;
 { .mmi
-        nop.m 0
-        nop.m 0
         add   GR_Parameter_RESULT = 48,sp
+        nop.m 0
+        nop.i 0
 };;
-
-// (4)
 { .mmi
-        ldfs  FR_Input_X = [GR_Parameter_RESULT]       // Get return result off stack
+        ldfs  f8 = [GR_Parameter_RESULT]      // Get return result off stack
 .restore sp
-        add   sp = 64,sp                       // Restore stack pointer
-        mov   b0 = GR_SAVE_B0                  // Restore return address
+        add   sp = 64,sp                      // Restore stack pointer
+        mov   b0 = GR_SAVE_B0                 // Restore return address
 };;
 { .mib
-        mov   gp = GR_SAVE_GP                  // Restore gp
-        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
-        br.ret.sptk   b0 
+        mov   gp = GR_SAVE_GP                 // Restore gp
+        mov   ar.pfs = GR_SAVE_PFS            // Restore ar.pfs
+        br.ret.sptk     b0                    // Return
 };;
-
-.endp __libm_error_region
-ASM_SIZE_DIRECTIVE(__libm_error_region)
-
-
-.proc __libm_LOG_main 
-__libm_LOG_main:
-L(LOG_main): 
-
-//
-//    kernel_log_64 computes ln(X + E)
-//
-
-{ .mfi
-	nop.m 999
-(p7)  fadd.s.s0 FR_Input_X = FR_Y_lo,FR_Y_hi
-        nop.i 999
-}
-
-{ .mmi
-	nop.m 999
-	nop.m 999
-(p14) addl GR_Table_Base = @ltoff(Constants_1_by_LN10#),gp ;; 
-}
-
-{ .mmi
-      nop.m 999
-(p14) ld8    GR_Table_Base = [GR_Table_Base]
-      nop.i 999
-};;
-
-{ .mmi
-(p14) ldfe FR_1LN10_hi = [GR_Table_Base],16 ;; 
-(p14) ldfe FR_1LN10_lo = [GR_Table_Base]
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-(p14) fmpy.s1 FR_Output_X_tmp = FR_Y_lo,FR_1LN10_hi
-	nop.i 999 ;;
-}
-
-{ .mfi
-	nop.m 999
-(p14) fma.s1  FR_Output_X_tmp = FR_Y_hi,FR_1LN10_lo,FR_Output_X_tmp
-	nop.i 999 ;;
-}
-
-{ .mfb
-	nop.m 999
-(p14) fma.s.s0 FR_Input_X = FR_Y_hi,FR_1LN10_hi,FR_Output_X_tmp
-(p0)  br.ret.sptk   b0 ;; 
-}
-.endp __libm_LOG_main
-ASM_SIZE_DIRECTIVE(__libm_LOG_main)
-
+LOCAL_LIBM_END(__libm_error_region)
 
 .type   __libm_error_support#,@function
 .global __libm_error_support#
+