about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/s_cos.S
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@gmail.com>2012-01-07 11:19:05 -0500
committerUlrich Drepper <drepper@gmail.com>2012-01-07 11:19:05 -0500
commitd75a0a62b12c35ee85f786d5f8d155ab39909411 (patch)
treec3479d23878ef4ab05629d4a60f4f7623269c1dd /sysdeps/ia64/fpu/s_cos.S
parentdcc9756b5bfbb2b97f73bad863d7e1c4002bea98 (diff)
downloadglibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.gz
glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.xz
glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.zip
Remove IA-64 support
Diffstat (limited to 'sysdeps/ia64/fpu/s_cos.S')
-rw-r--r--sysdeps/ia64/fpu/s_cos.S768
1 files changed, 0 insertions, 768 deletions
diff --git a/sysdeps/ia64/fpu/s_cos.S b/sysdeps/ia64/fpu/s_cos.S
deleted file mode 100644
index fc121fce19..0000000000
--- a/sysdeps/ia64/fpu/s_cos.S
+++ /dev/null
@@ -1,768 +0,0 @@
-.file "sincos.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 04/02/00 Unwind support added.
-// 06/16/00 Updated tables to enforce symmetry
-// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.
-// 09/20/00 The updated tables regressed to an old version, so reinstated them
-// 10/18/00 Changed one table entry to ensure symmetry
-// 01/03/01 Improved speed, fixed flag settings for small arguments.
-// 02/18/02 Large arguments processing routine excluded
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 06/03/02 Insure inexact flag set for large arg result
-// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/08/03 Improved performance
-// 10/28/04 Saved sincos_r_sincos to avoid clobber by dynamic loader 
-// 03/31/05 Reformatted delimiters between data tables
-
-// API
-//==============================================================
-// double sin( double x);
-// double cos( double x);
-//
-// Overview of operation
-//==============================================================
-//
-// Step 1
-// ======
-// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k  where k=4
-//    divide x by pi/2^k.
-//    Multiply by 2^k/pi.
-//    nfloat = Round result to integer (round-to-nearest)
-//
-// r = x -  nfloat * pi/2^k
-//    Do this as ((((x -  nfloat * HIGH(pi/2^k))) - 
-//                        nfloat * LOW(pi/2^k)) - 
-//                        nfloat * LOWEST(pi/2^k) for increased accuracy.
-//    pi/2^k is stored as two numbers that when added make pi/2^k.
-//       pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-//    HIGH and LOW parts are rounded to zero values, 
-//    and LOWEST is rounded to nearest one.
-//
-// x = (nfloat * pi/2^k) + r
-//    r is small enough that we can use a polynomial approximation
-//    and is referred to as the reduced argument.
-//
-// Step 3
-// ======
-// Take the unreduced part and remove the multiples of 2pi.
-// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
-//
-//    nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
-//    N * 2^(k+1)
-//    nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
-//    nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
-//    nfloat * pi/2^k = N2pi + M * pi/2^k
-//
-//
-// Sin(x) = Sin((nfloat * pi/2^k) + r)
-//        = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
-//
-//          Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
-//                               = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
-//                               = Sin(Mpi/2^k)
-//
-//          Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
-//                               = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
-//                               = Cos(Mpi/2^k)
-//
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-//
-// Step 4
-// ======
-// 0 <= M < 2^(k+1)
-// There are 2^(k+1) Sin entries in a table.
-// There are 2^(k+1) Cos entries in a table.
-//
-// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
-//
-//
-// Step 5
-// ======
-// Calculate Cos(r) and Sin(r) by polynomial approximation.
-//
-// Cos(r) = 1 + r^2 q1  + r^4 q2 + r^6 q3 + ... = Series for Cos
-// Sin(r) = r + r^3 p1  + r^5 p2 + r^7 p3 + ... = Series for Sin
-//
-// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table
-//
-//
-// Calculate
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-// as follows
-//
-//    S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
-//    rsq = r*r
-//
-//
-//    P = p1 + r^2p2 + r^4p3 + r^6p4
-//    Q = q1 + r^2q2 + r^4q3 + r^6q4
-//
-//       rcub = r * rsq
-//       Sin(r) = r + rcub * P
-//              = r + r^3p1  + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)
-//
-//            The coefficients are not exactly these values, but almost.
-//
-//            p1 = -1/6  = -1/3!
-//            p2 = 1/120 =  1/5!
-//            p3 = -1/5040 = -1/7!
-//            p4 = 1/362889 = 1/9!
-//
-//       P =  r + rcub * P
-//
-//    Answer = S[m] Cos(r) + [Cm] P
-//
-//       Cos(r) = 1 + rsq Q
-//       Cos(r) = 1 + r^2 Q
-//       Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
-//       Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
-//
-//       S[m] Cos(r) = S[m](1 + rsq Q)
-//       S[m] Cos(r) = S[m] + Sm rsq Q
-//       S[m] Cos(r) = S[m] + s_rsq Q
-//       Q         = S[m] + s_rsq Q
-//
-// Then,
-//
-//    Answer = Q + C[m] P
-
-
-// Registers used
-//==============================================================
-// general input registers:
-// r14 -> r26
-// r32 -> r35
-
-// predicate registers used:
-// p6 -> p11
-
-// floating-point registers used
-// f9 -> f15
-// f32 -> f61
-
-// Assembly macros
-//==============================================================
-sincos_NORM_f8                 = f9
-sincos_W                       = f10
-sincos_int_Nfloat              = f11
-sincos_Nfloat                  = f12
-
-sincos_r                       = f13
-sincos_rsq                     = f14
-sincos_rcub                    = f15
-sincos_save_tmp                = f15
-
-sincos_Inv_Pi_by_16            = f32
-sincos_Pi_by_16_1              = f33
-sincos_Pi_by_16_2              = f34
-
-sincos_Inv_Pi_by_64            = f35
-
-sincos_Pi_by_16_3              = f36
-
-sincos_r_exact                 = f37
-
-sincos_Sm                      = f38
-sincos_Cm                      = f39
-
-sincos_P1                      = f40
-sincos_Q1                      = f41
-sincos_P2                      = f42
-sincos_Q2                      = f43
-sincos_P3                      = f44
-sincos_Q3                      = f45
-sincos_P4                      = f46
-sincos_Q4                      = f47
-
-sincos_P_temp1                 = f48
-sincos_P_temp2                 = f49
-
-sincos_Q_temp1                 = f50
-sincos_Q_temp2                 = f51
-
-sincos_P                       = f52
-sincos_Q                       = f53
-
-sincos_srsq                    = f54
-
-sincos_SIG_INV_PI_BY_16_2TO61  = f55
-sincos_RSHF_2TO61              = f56
-sincos_RSHF                    = f57
-sincos_2TOM61                  = f58
-sincos_NFLOAT                  = f59
-sincos_W_2TO61_RSH             = f60
-
-fp_tmp                         = f61
-
-/////////////////////////////////////////////////////////////
-
-sincos_GR_sig_inv_pi_by_16     = r14
-sincos_GR_rshf_2to61           = r15
-sincos_GR_rshf                 = r16
-sincos_GR_exp_2tom61           = r17
-sincos_GR_n                    = r18
-sincos_GR_m                    = r19
-sincos_GR_32m                  = r19
-sincos_GR_all_ones             = r19
-sincos_AD_1                    = r20
-sincos_AD_2                    = r21
-sincos_exp_limit               = r22
-sincos_r_signexp               = r23
-sincos_r_17_ones               = r24
-sincos_r_sincos                = r25
-sincos_r_exp                   = r26
-
-GR_SAVE_PFS                    = r33
-GR_SAVE_B0                     = r34
-GR_SAVE_GP                     = r35
-GR_SAVE_r_sincos               = r36
-
-
-RODATA
-
-// Pi/16 parts
-.align 16
-LOCAL_OBJECT_START(double_sincos_pi)
-   data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
-   data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
-   data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
-LOCAL_OBJECT_END(double_sincos_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_sincos_pq_k4)
-   data8 0x3EC71C963717C63A // P4
-   data8 0x3EF9FFBA8F191AE6 // Q4
-   data8 0xBF2A01A00F4E11A8 // P3
-   data8 0xBF56C16C05AC77BF // Q3
-   data8 0x3F8111111110F167 // P2
-   data8 0x3FA555555554DD45 // Q2
-   data8 0xBFC5555555555555 // P1
-   data8 0xBFDFFFFFFFFFFFFC // Q1
-LOCAL_OBJECT_END(double_sincos_pq_k4)
-
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
-
-data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16)  S0
-data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16)  C0
-//
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16)  S1
-data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16)  C1
-//
-data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16)  S2
-data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16)  C2
-//
-data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16)  S3
-data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16)  C3
-//
-data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16)  S4
-data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16)  C4
-//
-data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16)  C3
-data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16)  S3
-//
-data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16)  C2
-data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16)  S2
-//
-data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16)  C1
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16)  S1
-//
-data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16)  C0
-data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16)  S0
-//
-data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16)  C1
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16)  -S1
-//
-data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16)  C2
-data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16)  -S2
-//
-data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16)  C3
-data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16)  -S3
-//
-data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16)  S4
-data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16)  -S4
-//
-data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
-data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
-//
-data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
-data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
-//
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
-data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
-//
-data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
-data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
-//
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
-data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
-//
-data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
-data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
-//
-data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
-data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
-//
-data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
-data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
-//
-data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
-data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
-//
-data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
-data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
-//
-data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
-//
-data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
-data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
-//
-data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
-//
-data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
-data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
-//
-data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
-data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
-//
-data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
-data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
-//
-data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
-data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
-//
-data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
-data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
-//
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
-data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
-//
-data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
-data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
-
-.section .text
-
-////////////////////////////////////////////////////////
-// There are two entry points: sin and cos
-
-
-// If from sin, p8 is true
-// If from cos, p9 is true
-
-GLOBAL_IEEE754_ENTRY(sin)
-
-{ .mlx
-      getf.exp      sincos_r_signexp    = f8
-      movl sincos_GR_sig_inv_pi_by_16   = 0xA2F9836E4E44152A // signd of 16/pi
-}
-{ .mlx
-      addl          sincos_AD_1         = @ltoff(double_sincos_pi), gp
-      movl sincos_GR_rshf_2to61         = 0x47b8000000000000 // 1.1 2^(63+63-2)
-}
-;;
-
-{ .mfi
-      ld8           sincos_AD_1         = [sincos_AD_1]
-      fnorm.s0      sincos_NORM_f8      = f8  // Normalize argument
-      cmp.eq        p8,p9               = r0, r0 // set p8 (clear p9) for sin
-}
-{ .mib
-      mov           sincos_GR_exp_2tom61  = 0xffff-61 // exponent of scale 2^-61
-      mov           sincos_r_sincos       = 0x0 // sincos_r_sincos = 0 for sin
-      br.cond.sptk  _SINCOS_COMMON  // go to common part
-}
-;;
-
-GLOBAL_IEEE754_END(sin)
-
-GLOBAL_IEEE754_ENTRY(cos)
-
-{ .mlx
-      getf.exp      sincos_r_signexp    = f8
-      movl sincos_GR_sig_inv_pi_by_16   = 0xA2F9836E4E44152A // signd of 16/pi
-}
-{ .mlx
-      addl          sincos_AD_1         = @ltoff(double_sincos_pi), gp
-      movl sincos_GR_rshf_2to61         = 0x47b8000000000000 // 1.1 2^(63+63-2)
-}
-;;
-
-{ .mfi
-      ld8           sincos_AD_1         = [sincos_AD_1]
-      fnorm.s1      sincos_NORM_f8      = f8 // Normalize argument
-      cmp.eq        p9,p8               = r0, r0 // set p9 (clear p8) for cos
-}
-{ .mib
-      mov           sincos_GR_exp_2tom61  = 0xffff-61 // exp of scale 2^-61
-      mov           sincos_r_sincos       = 0x8 // sincos_r_sincos = 8 for cos
-      nop.b         999
-}
-;;
-
-////////////////////////////////////////////////////////
-// All entry points end up here.
-// If from sin, sincos_r_sincos is 0 and p8 is true
-// If from cos, sincos_r_sincos is 8 = 2^(k-1) and p9 is true
-// We add sincos_r_sincos to N
-
-///////////// Common sin and cos part //////////////////
-_SINCOS_COMMON:
-
-
-// Form two constants we need
-//  16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
-//  1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
-{ .mfi
-      setf.sig      sincos_SIG_INV_PI_BY_16_2TO61 = sincos_GR_sig_inv_pi_by_16
-      fclass.m      p6,p0                         = f8, 0xe7 // if x = 0,inf,nan
-      mov           sincos_exp_limit              = 0x1001a
-}
-{ .mlx
-      setf.d        sincos_RSHF_2TO61   = sincos_GR_rshf_2to61
-      movl          sincos_GR_rshf      = 0x43e8000000000000 // 1.1 2^63
-}                                                            // Right shift
-;;
-
-// Form another constant
-//  2^-61 for scaling Nfloat
-// 0x1001a is register_bias + 27.
-// So if f8 >= 2^27, go to large argument routines
-{ .mfi
-      alloc         r32                 = ar.pfs, 1, 4, 0, 0
-      fclass.m      p11,p0              = f8, 0x0b // Test for x=unorm
-      mov           sincos_GR_all_ones  = -1 // For "inexect" constant create
-}
-{ .mib
-      setf.exp      sincos_2TOM61       = sincos_GR_exp_2tom61
-      nop.i         999
-(p6)  br.cond.spnt  _SINCOS_SPECIAL_ARGS
-}
-;;
-
-// Load the two pieces of pi/16
-// Form another constant
-//  1.1000...000 * 2^63, the right shift constant
-{ .mmb
-      ldfe          sincos_Pi_by_16_1   = [sincos_AD_1],16
-      setf.d        sincos_RSHF         = sincos_GR_rshf
-(p11) br.cond.spnt  _SINCOS_UNORM       // Branch if x=unorm
-}
-;;
-
-_SINCOS_COMMON2:
-// Return here if x=unorm
-// Create constant used to set inexact
-{ .mmi
-      ldfe          sincos_Pi_by_16_2   = [sincos_AD_1],16
-      setf.sig      fp_tmp              = sincos_GR_all_ones
-      nop.i         999
-};;
-
-// Select exponent (17 lsb)
-{ .mfi
-      ldfe          sincos_Pi_by_16_3   = [sincos_AD_1],16
-      nop.f         999
-      dep.z         sincos_r_exp        = sincos_r_signexp, 0, 17 
-};;
-
-// Polynomial coefficients (Q4, P4, Q3, P3, Q2, Q1, P2, P1) loading
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is >= 0x1001a (2^27)
-{ .mmb
-      ldfpd         sincos_P4,sincos_Q4 = [sincos_AD_1],16
-      cmp.ge        p10,p0              = sincos_r_exp,sincos_exp_limit 
-(p10) br.cond.spnt  _SINCOS_LARGE_ARGS // Go to "large args" routine
-};;
-
-// sincos_W          = x * sincos_Inv_Pi_by_16
-// Multiply x by scaled 16/pi and add large const to shift integer part of W to
-//   rightmost bits of significand
-{ .mfi
-      ldfpd         sincos_P3,sincos_Q3 = [sincos_AD_1],16
-      fma.s1 sincos_W_2TO61_RSH = sincos_NORM_f8,sincos_SIG_INV_PI_BY_16_2TO61,sincos_RSHF_2TO61
-      nop.i         999
-};;
-
-// get N = (int)sincos_int_Nfloat
-// sincos_NFLOAT = Round_Int_Nearest(sincos_W)
-// This is done by scaling back by 2^-61 and subtracting the shift constant
-{ .mmf
-      getf.sig      sincos_GR_n         = sincos_W_2TO61_RSH
-      ldfpd         sincos_P2,sincos_Q2 = [sincos_AD_1],16
-      fms.s1 sincos_NFLOAT = sincos_W_2TO61_RSH,sincos_2TOM61,sincos_RSHF
-};;
-
-// sincos_r          = -sincos_Nfloat * sincos_Pi_by_16_1 + x
-{ .mfi
-      ldfpd         sincos_P1,sincos_Q1 = [sincos_AD_1],16
-      fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_1, sincos_NORM_f8
-      nop.i         999 
-};;
-
-// Add 2^(k-1) (which is in sincos_r_sincos) to N
-{ .mmi
-      add           sincos_GR_n         = sincos_GR_n, sincos_r_sincos
-;;
-// Get M (least k+1 bits of N)
-      and           sincos_GR_m         = 0x1f,sincos_GR_n
-      nop.i         999 
-};;
-
-// sincos_r          = sincos_r -sincos_Nfloat * sincos_Pi_by_16_2
-{ .mfi
-      nop.m         999
-      fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_2,  sincos_r
-      shl           sincos_GR_32m       = sincos_GR_m,5
-};;
-
-// Add 32*M to address of sin_cos_beta table
-// For sin denorm. - set uflow
-{ .mfi
-      add           sincos_AD_2         = sincos_GR_32m, sincos_AD_1
-(p8)  fclass.m.unc  p10,p0              = f8,0x0b
-      nop.i         999 
-};;
-
-// Load Sin and Cos table value using obtained index m  (sincosf_AD_2)
-{ .mfi
-      ldfe          sincos_Sm           = [sincos_AD_2],16
-      nop.f         999 
-      nop.i         999 
-};;
-
-// get rsq = r*r
-{ .mfi
-      ldfe          sincos_Cm           = [sincos_AD_2]
-      fma.s1        sincos_rsq          = sincos_r, sincos_r,   f0 // r^2 = r*r
-      nop.i         999
-}
-{ .mfi
-      nop.m         999
-      fmpy.s0       fp_tmp              = fp_tmp,fp_tmp // forces inexact flag
-      nop.i         999 
-};;
-
-// sincos_r_exact = sincos_r -sincos_Nfloat * sincos_Pi_by_16_3
-{ .mfi
-      nop.m         999
-      fnma.s1 sincos_r_exact = sincos_NFLOAT, sincos_Pi_by_16_3, sincos_r
-      nop.i         999 
-};;
-
-// Polynomials calculation 
-// P_1 = P4*r^2 + P3
-// Q_2 = Q4*r^2 + Q3
-{ .mfi
-      nop.m         999
-      fma.s1        sincos_P_temp1      = sincos_rsq, sincos_P4, sincos_P3
-      nop.i         999
-}
-{ .mfi
-      nop.m         999
-      fma.s1        sincos_Q_temp1      = sincos_rsq, sincos_Q4, sincos_Q3
-      nop.i         999 
-};;
-
-// get rcube = r^3 and S[m]*r^2
-{ .mfi
-      nop.m         999
-      fmpy.s1       sincos_srsq         = sincos_Sm,sincos_rsq
-      nop.i         999
-}
-{ .mfi
-      nop.m         999
-      fmpy.s1       sincos_rcub         = sincos_r_exact, sincos_rsq
-      nop.i         999 
-};;
-
-// Polynomials calculation 
-// Q_2 = Q_1*r^2 + Q2
-// P_1 = P_1*r^2 + P2
-{ .mfi
-      nop.m         999
-      fma.s1        sincos_Q_temp2      = sincos_rsq, sincos_Q_temp1, sincos_Q2
-      nop.i         999
-}
-{ .mfi
-      nop.m         999
-      fma.s1        sincos_P_temp2      = sincos_rsq, sincos_P_temp1, sincos_P2
-      nop.i         999 
-};;
-
-// Polynomials calculation 
-// Q = Q_2*r^2 + Q1
-// P = P_2*r^2 + P1
-{ .mfi
-      nop.m         999
-      fma.s1        sincos_Q            = sincos_rsq, sincos_Q_temp2, sincos_Q1
-      nop.i         999
-}
-{ .mfi
-      nop.m         999
-      fma.s1        sincos_P            = sincos_rsq, sincos_P_temp2, sincos_P1
-      nop.i         999 
-};;
-
-// Get final P and Q
-// Q = Q*S[m]*r^2 + S[m]
-// P = P*r^3 + r
-{ .mfi
-      nop.m         999
-      fma.s1        sincos_Q            = sincos_srsq,sincos_Q, sincos_Sm
-      nop.i         999
-}
-{ .mfi
-      nop.m         999
-      fma.s1        sincos_P            = sincos_rcub,sincos_P, sincos_r_exact
-      nop.i         999 
-};;
-
-// If sin(denormal), force underflow to be set
-{ .mfi
-      nop.m         999
-(p10) fmpy.d.s0     fp_tmp              = sincos_NORM_f8,sincos_NORM_f8
-      nop.i         999
-};;
-
-// Final calculation
-// result = C[m]*P + Q
-{ .mfb
-      nop.m         999
-      fma.d.s0      f8                  = sincos_Cm, sincos_P, sincos_Q
-      br.ret.sptk   b0  // Exit for common path
-};;
-
-////////// x = 0/Inf/NaN path //////////////////
-_SINCOS_SPECIAL_ARGS:
-.pred.rel "mutex",p8,p9
-// sin(+/-0) = +/-0
-// sin(Inf)  = NaN
-// sin(NaN)  = NaN
-{ .mfi
-      nop.m         999
-(p8)  fma.d.s0      f8                  = f8, f0, f0 // sin(+/-0,NaN,Inf)
-      nop.i         999
-}
-// cos(+/-0) = 1.0
-// cos(Inf)  = NaN
-// cos(NaN)  = NaN
-{ .mfb
-      nop.m         999
-(p9)  fma.d.s0      f8                  = f8, f0, f1 // cos(+/-0,NaN,Inf)
-      br.ret.sptk   b0 // Exit for x = 0/Inf/NaN path
-};;
-
-_SINCOS_UNORM:
-// Here if x=unorm
-{ .mfb
-      getf.exp      sincos_r_signexp    = sincos_NORM_f8 // Get signexp of x 
-      fcmp.eq.s0    p11,p0              = f8, f0  // Dummy op to set denorm flag
-      br.cond.sptk  _SINCOS_COMMON2     // Return to main path
-};;
-
-GLOBAL_IEEE754_END(cos)
-
-//////////// x >= 2^27 - large arguments routine call ////////////
-LOCAL_LIBM_ENTRY(__libm_callout_sincos)
-_SINCOS_LARGE_ARGS:
-.prologue
-{ .mfi
-      mov           GR_SAVE_r_sincos    = sincos_r_sincos // Save sin or cos
-      nop.f         999
-.save ar.pfs,GR_SAVE_PFS
-      mov           GR_SAVE_PFS         = ar.pfs
-}
-;;
-
-{ .mfi
-      mov           GR_SAVE_GP          = gp
-      nop.f         999
-.save b0, GR_SAVE_B0
-      mov           GR_SAVE_B0          = b0
-}
-
-.body
-{ .mbb
-      setf.sig      sincos_save_tmp     = sincos_GR_all_ones// inexact set
-      nop.b         999
-(p8)  br.call.sptk.many b0              = __libm_sin_large# // sin(large_X)
-
-};;
-
-{ .mbb
-      cmp.ne        p9,p0               = GR_SAVE_r_sincos, r0 // set p9 if cos
-      nop.b         999
-(p9)  br.call.sptk.many b0              = __libm_cos_large# // cos(large_X)
-};;
-
-{ .mfi
-      mov           gp                  = GR_SAVE_GP
-      fma.d.s0      f8                  = f8, f1, f0 // Round result to double
-      mov           b0                  = GR_SAVE_B0
-}
-// Force inexact set
-{ .mfi
-      nop.m         999
-      fmpy.s0       sincos_save_tmp     = sincos_save_tmp, sincos_save_tmp
-      nop.i         999 
-};;
-
-{ .mib
-      nop.m         999
-      mov           ar.pfs              = GR_SAVE_PFS
-      br.ret.sptk   b0 // Exit for large arguments routine call
-};;
-
-LOCAL_LIBM_END(__libm_callout_sincos)
-
-.type    __libm_sin_large#,@function
-.global  __libm_sin_large#
-.type    __libm_cos_large#,@function
-.global  __libm_cos_large#
-