diff options
author | Mike Frysinger <vapier@gentoo.org> | 2014-02-15 22:07:25 -0500 |
---|---|---|
committer | Mike Frysinger <vapier@gentoo.org> | 2014-02-16 01:12:38 -0500 |
commit | c70a4b1db0cf5e813ae24b0fa96a352399eb6edf (patch) | |
tree | 5a36b0f0955682ae5232907d04fdf68589990783 /sysdeps/ia64/fpu/libm_support.h | |
parent | 591aeaf7a99bc9aa9179f013114d92496952dced (diff) | |
download | glibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.tar.gz glibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.tar.xz glibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.zip |
ia64: relocate out of ports/ subdir
Diffstat (limited to 'sysdeps/ia64/fpu/libm_support.h')
-rw-r--r-- | sysdeps/ia64/fpu/libm_support.h | 1051 |
1 files changed, 1051 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/libm_support.h b/sysdeps/ia64/fpu/libm_support.h new file mode 100644 index 0000000000..dc9c0a2648 --- /dev/null +++ b/sysdeps/ia64/fpu/libm_support.h @@ -0,0 +1,1051 @@ +/* file: libm_support.h */ + + +/* +// Copyright (c) 2000 - 2004, Intel Corporation +// All rights reserved. +// +// Contributed 2000 by the Intel Numerics Group, Intel Corporation +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote +// products derived from this software without specific prior written +// permission. + +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS +// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Intel Corporation is the author of this code, and requests that all +// problem reports or change requests be submitted to it directly at +// http://www.intel.com/software/products/opensource/libraries/num.htm. +// + +// History: 02/02/2000 Initial version +// 2/28/2000 added tags for logb and nextafter +// 3/22/2000 Changes to support _LIB_VERSIONIMF variable +// and filled some enum gaps. Added support for C99. +// 5/31/2000 added prototypes for __libm_frexp_4l/8l +// 8/10/2000 Changed declaration of _LIB_VERSIONIMF to work for library +// builds and other application builds (precompiler directives). +// 8/11/2000 Added pointers-to-matherr-functions declarations to allow +// for user-defined matherr functions in the dll build. +// 12/07/2000 Added scalbn error_types values. +// 5/01/2001 Added error_types values for C99 nearest integer +// functions. +// 6/07/2001 Added error_types values for fdim. +// 6/18/2001 Added include of complex_support.h. +// 8/03/2001 Added error_types values for nexttoward, scalbln. +// 8/23/2001 Corrected tag numbers from 186 and higher. +// 8/27/2001 Added check for long int and long long int definitions. +// 12/10/2001 Added error_types for erfc. +// 12/27/2001 Added error_types for degree argument functions. +// 01/02/2002 Added error_types for tand, cotd. +// 01/04/2002 Delete include of complex_support.h +// 01/23/2002 Deleted prototypes for __libm_frexp*. Added check for +// multiple int, long int, and long long int definitions. +// 05/20/2002 Added error_types for cot. +// 06/27/2002 Added error_types for sinhcosh. +// 12/05/2002 Added error_types for annuity and compound +// 04/10/2003 Added error_types for tgammal/tgamma/tgammaf +// 05/16/2003 FP-treatment macros copied here from IA32 libm_support.h +// 06/02/2003 Added pad into struct fp80 (12/16 bytes). +// 08/01/2003 Added struct ker80 and macros for multiprecision addition, +// subtraction, multiplication, division, square root. +// 08/07/2003 History section updated. +// 09/03/2003 ALIGN(n) macro added. +// 10/01/2003 LDOUBLE_ALIGN and fp80 corrected on linux to 16 bytes. +// 11/24/2004 Added ifdef around definitions of INT32/64 +// 12/15/2004 Added error_types for exp10, nextafter, nexttoward +// underflow. Moved error codes into libm_error_codes.h. +// +*/ + +#ifndef __LIBM_SUPPORT_H_INCLUDED__ +#define __LIBM_SUPPORT_H_INCLUDED__ + +#ifndef _LIBC +#if !(defined(_WIN32) || defined(_WIN64)) +# pragma const_seg(".rodata") /* place constant data in text (code) section */ +#endif + +#if defined(__ICC) || defined(__ICL) || defined(__ECC) || defined(__ECL) +# pragma warning( disable : 1682 ) /* #1682: ixplicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) */ +# pragma warning( disable : 1683 ) /* #1683: explicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) */ +#endif +#endif + +/* macros to form a double value in hex representation (unsigned int type) */ + +#define DOUBLE_HEX(hi,lo) 0x##lo,0x##hi /*LITTLE_ENDIAN*/ + +#include "libm_cpu_defs.h" + +#if !(defined (IA64)) +# include "libm_dll.h" +# include "libm_dispatch.h" +#endif + +#include "libm_error_codes.h" + +struct exceptionf +{ + int type; + char *name; + float arg1, arg2, retval; +}; + +# ifdef __cplusplus +struct __exception +{ + int type; + char *name; + double arg1, arg2, retval; +}; +# else + +# ifndef _LIBC +struct exception +{ + int type; + char *name; + double arg1, arg2, retval; +}; +# endif +# endif + +struct exceptionl +{ + int type; + char *name; + long double arg1, arg2, retval; +}; + +#if (defined (_MS_) && defined (IA64)) +#define MATHERR_F _matherrf +#define MATHERR_D _matherr +#else +#define MATHERR_F matherrf +#define MATHERR_D matherr +#endif + +# ifdef __cplusplus +#define EXC_DECL_D __exception +#else +// exception is a reserved name in C++ +#define EXC_DECL_D exception +#endif + +extern int MATHERR_F(struct exceptionf*); +extern int MATHERR_D(struct EXC_DECL_D*); +extern int matherrl(struct exceptionl*); + +#ifndef _LIBC +// Add code to support _LIB_VERSIONIMF +typedef enum +{ + _IEEE_ = -1, // IEEE-like behavior + _SVID_, // SysV, Rel. 4 behavior + _XOPEN_, // Unix98 + _POSIX_, // Posix + _ISOC_ // ISO C9X +} _LIB_VERSION_TYPE; +#endif + +// This is a run-time variable and may affect +// floating point behavior of the libm functions + +#if !defined( LIBM_BUILD ) +#if defined( _DLL ) +extern _LIB_VERSION_TYPE __declspec(dllimport) _LIB_VERSIONIMF; +#else +extern _LIB_VERSION_TYPE _LIB_VERSIONIMF; +#endif /* _DLL */ +#else +extern int (*pmatherrf)(struct exceptionf*); +extern int (*pmatherr)(struct EXC_DECL_D*); +extern int (*pmatherrl)(struct exceptionl*); +#endif /* LIBM_BUILD */ + +/* memory format definitions (LITTLE_ENDIAN only) */ + +#if !(defined(SIZE_INT_32) || defined(SIZE_INT_64)) +# error "You need to define SIZE_INT_32 or SIZE_INT_64" +#endif + +#if (defined(SIZE_INT_32) && defined(SIZE_INT_64)) +#error multiple integer size definitions; define SIZE_INT_32 or SIZE_INT_64 +#endif + +#if !(defined(SIZE_LONG_32) || defined(SIZE_LONG_64)) +# error "You need to define SIZE_LONG_32 or SIZE_LONG_64" +#endif + +#if (defined(SIZE_LONG_32) && defined(SIZE_LONG_64)) +#error multiple integer size definitions; define SIZE_LONG_32 or SIZE_LONG_64 +#endif + +#if !defined(__USE_EXTERNAL_FPMEMTYP_H__) + +#define BIAS_32 0x007F +#define BIAS_64 0x03FF +#define BIAS_80 0x3FFF + +#define MAXEXP_32 0x00FE +#define MAXEXP_64 0x07FE +#define MAXEXP_80 0x7FFE + +#define EXPINF_32 0x00FF +#define EXPINF_64 0x07FF +#define EXPINF_80 0x7FFF + +struct fp32 { /*// sign:1 exponent:8 significand:23 (implied leading 1)*/ +#if defined(SIZE_INT_32) + unsigned significand:23; + unsigned exponent:8; + unsigned sign:1; +#elif defined(SIZE_INT_64) + unsigned significand:23; + unsigned exponent:8; + unsigned sign:1; +#endif +}; + +struct fp64 { /*/ sign:1 exponent:11 significand:52 (implied leading 1)*/ +#if defined(SIZE_INT_32) + unsigned lo_significand:32; + unsigned hi_significand:20; + unsigned exponent:11; + unsigned sign:1; +#elif defined(SIZE_INT_64) + unsigned significand:52; + unsigned exponent:11; + unsigned sign:1; +#endif +}; + +struct fp80 { /*/ sign:1 exponent:15 significand:64 (NO implied bits) */ +#if defined(SIZE_INT_32) + unsigned lo_significand; + unsigned hi_significand; + unsigned exponent:15; + unsigned sign:1; +#elif defined(SIZE_INT_64) + unsigned significand; + unsigned exponent:15; + unsigned sign:1; +#endif + unsigned pad:16; +#if !(defined(__unix__) && defined(__i386__)) + unsigned padwin:32; +#endif +}; + +#endif /*__USE_EXTERNAL_FPMEMTYP_H__*/ + +#if !(defined(opensource)) +typedef __int32 INT32; +typedef signed __int32 SINT32; +typedef unsigned __int32 UINT32; + +typedef __int64 INT64; +typedef signed __int64 SINT64; +typedef unsigned __int64 UINT64; +#else +typedef int INT32; +typedef signed int SINT32; +typedef unsigned int UINT32; + +typedef long long INT64; +typedef signed long long SINT64; +typedef unsigned long long UINT64; +#endif + +#if (defined(_WIN32) || defined(_WIN64)) /* Windows */ +# define I64CONST(bits) 0x##bits##i64 +# define U64CONST(bits) 0x##bits##ui64 +#elif (defined(__linux__) && defined(_M_IA64)) /* Linux,64 */ +# define I64CONST(bits) 0x##bits##L +# define U64CONST(bits) 0x##bits##uL +#else /* Linux,32 */ +# define I64CONST(bits) 0x##bits##LL +# define U64CONST(bits) 0x##bits##uLL +#endif + +struct ker80 { + union { + long double ldhi; + struct fp80 fphi; + }; + union { + long double ldlo; + struct fp80 fplo; + }; + int ex; +}; + +/* Addition: x+y */ +/* The result is sum rhi+rlo */ +/* Temporary variables: t1 */ +/* All variables are in long double precision */ +/* Correct if no overflow (algorithm by D.Knuth) */ +#define __LIBM_ADDL1_K80( rhi,rlo,x,y, t1 ) \ + rhi = x + y; \ + rlo = rhi - x; \ + t1 = rhi - rlo; \ + rlo = y - rlo; \ + t1 = x - t1; \ + rlo = rlo + t1; + +/* Addition: (xhi+xlo) + (yhi+ylo) */ +/* The result is sum rhi+rlo */ +/* Temporary variables: t1 */ +/* All variables are in long double precision */ +/* Correct if no overflow (algorithm by T.J.Dekker) */ +#define __LIBM_ADDL2_K80( rhi,rlo,xhi,xlo,yhi,ylo, t1 ) \ + rlo = xhi+yhi; \ + if ( VALUE_GT_80(FP80(xhi),FP80(yhi)) ) { \ + t1=xhi-rlo;t1=t1+yhi;t1=t1+ylo;t1=t1+xlo; \ + } else { \ + t1=yhi-rlo;t1=t1+xhi;t1=t1+xlo;t1=t1+ylo; \ + } \ + rhi=rlo+t1; \ + rlo=rlo-rhi;rlo=rlo+t1; + +/* Addition: r=x+y */ +/* Variables r,x,y are pointers to struct ker80, */ +/* all other variables are in long double precision */ +/* Temporary variables: t1 */ +/* Correct if x and y belong to interval [2^-8000;2^8000], */ +/* or when one or both of them are zero */ +#if defined(SIZE_INT_32) +#define __LIBM_ADDL_K80(r,x,y, t1) \ + if ( ((y)->ex+(y)->fphi.exponent-134 < \ + (x)->ex+(x)->fphi.exponent) && \ + ((x)->ex+(x)->fphi.exponent < \ + (y)->ex+(y)->fphi.exponent+134) && \ + !SIGNIFICAND_ZERO_80(&((x)->fphi)) && \ + !SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \ + { \ + /* y/2^134 < x < y*2^134, */ \ + /* and x,y are nonzero finite numbers */ \ + if ( (x)->ex != (y)->ex ) { \ + /* adjust x->ex to y->ex */ \ + /* t1 = 2^(x->ex - y->ex) */ \ + FP80(t1)->sign = 0; \ + FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \ + /* exponent is correct because */ \ + /* |x->ex - y->ex| = */ \ + /* = | (x->ex + x->fphi.exponent) - */ \ + /* -(y->ex + y->fphi.exponent) + */ \ + /* + y->fphi.exponent - */ \ + /* - x->fphi.exponent | < */ \ + /* < | (x->ex+x->fphi.exponent) - */ \ + /* -(y->ex+y->fphi.exponent) | + */ \ + /* +| y->fphi.exponent - */ \ + /* -x->fphi.exponent | < */ \ + /* < 134 + 16000 */ \ + FP80(t1)->hi_significand = 0x80000000; \ + FP80(t1)->lo_significand = 0x00000000; \ + (x)->ex = (y)->ex; \ + (x)->ldhi *= t1; \ + (x)->ldlo *= t1; \ + } \ + /* r==x+y */ \ + (r)->ex = (y)->ex; \ + __LIBM_ADDL2_K80( (r)->ldhi,(r)->ldlo, \ + (x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \ + } else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \ + ((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \ + (x)->ex+(x)->fphi.exponent-BIAS_80) ) \ + { \ + /* |x|<<|y| */ \ + *(r) = *(y); \ + } else { \ + /* |y|<<|x| */ \ + *(r) = *(x); \ + } +#elif defined(SIZE_INT_64) +#define __LIBM_ADDL_K80(r,x,y, t1) \ + if ( ((y)->ex+(y)->fphi.exponent-134 < \ + (x)->ex+(x)->fphi.exponent) && \ + ((x)->ex+(x)->fphi.exponent < \ + (y)->ex+(y)->fphi.exponent+134) && \ + !SIGNIFICAND_ZERO_80(&((x)->fphi)) && \ + !SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \ + { \ + /* y/2^134 < x < y*2^134, */ \ + /* and x,y are nonzero finite numbers */ \ + if ( (x)->ex != (y)->ex ) { \ + /* adjust x->ex to y->ex */ \ + /* t1 = 2^(x->ex - y->ex) */ \ + FP80(t1)->sign = 0; \ + FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \ + /* exponent is correct because */ \ + /* |x->ex - y->ex| = */ \ + /* = | (x->ex + x->fphi.exponent) - */ \ + /* -(y->ex + y->fphi.exponent) + */ \ + /* + y->fphi.exponent - */ \ + /* - x->fphi.exponent | < */ \ + /* < | (x->ex+x->fphi.exponent) - */ \ + /* -(y->ex+y->fphi.exponent) | + */ \ + /* +| y->fphi.exponent - */ \ + /* -x->fphi.exponent | < */ \ + /* < 134 + 16000 */ \ + FP80(t1)->significand = 0x8000000000000000; \ + (x)->ex = (y)->ex; \ + (x)->ldhi *= t1; \ + (x)->ldlo *= t1; \ + } \ + /* r==x+y */ \ + (r)->ex = (y)->ex; \ + __LIBM_ADDL2_K80( (r)->ldhi,(r)->ldlo, \ + (x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \ + } else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \ + ((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \ + (x)->ex+(x)->fphi.exponent-BIAS_80) ) \ + { \ + /* |x|<<|y| */ \ + *(r) = *(y); \ + } else { \ + /* |y|<<|x| */ \ + *(r) = *(x); \ + } +#endif + +/* Addition: r=x+y */ +/* Variables r,x,y are pointers to struct ker80, */ +/* all other variables are in long double precision */ +/* Temporary variables: t1 */ +/* Correct for any finite x and y */ +#define __LIBM_ADDL_NORM_K80(r,x,y, t1) \ + if ( ((x)->fphi.exponent-BIAS_80<-8000) || \ + ((x)->fphi.exponent-BIAS_80>+8000) || \ + ((y)->fphi.exponent-BIAS_80<-8000) || \ + ((y)->fphi.exponent-BIAS_80>+8000) ) \ + { \ + __libm_normalizel_k80(x); \ + __libm_normalizel_k80(y); \ + } \ + __LIBM_ADDL_K80(r,x,y, t1) + +/* Subtraction: x-y */ +/* The result is sum rhi+rlo */ +/* Temporary variables: t1 */ +/* All variables are in long double precision */ +/* Correct if no overflow (algorithm by D.Knuth) */ +#define __LIBM_SUBL1_K80( rhi, rlo, x, y, t1 ) \ + rhi = x - y; \ + rlo = rhi - x; \ + t1 = rhi - rlo; \ + rlo = y + rlo; \ + t1 = x - t1; \ + rlo = t1 - rlo; + +/* Subtraction: (xhi+xlo) - (yhi+ylo) */ +/* The result is sum rhi+rlo */ +/* Temporary variables: t1 */ +/* All variables are in long double precision */ +/* Correct if no overflow (algorithm by T.J.Dekker) */ +#define __LIBM_SUBL2_K80( rhi,rlo,xhi,xlo,yhi,ylo, t1 ) \ + rlo = xhi-yhi; \ + if ( VALUE_GT_80(FP80(xhi),FP80(yhi)) ) { \ + t1=xhi-rlo;t1=t1-yhi;t1=t1-ylo;t1=t1+xlo; \ + } else { \ + t1=yhi+rlo;t1=xhi-t1;t1=t1+xlo;t1=t1-ylo; \ + } \ + rhi=rlo+t1; \ + rlo=rlo-rhi;rlo=rlo+t1; + +/* Subtraction: r=x-y */ +/* Variables r,x,y are pointers to struct ker80, */ +/* all other variables are in long double precision */ +/* Temporary variables: t1 */ +/* Correct if x and y belong to interval [2^-8000;2^8000], */ +/* or when one or both of them are zero */ +#if defined(SIZE_INT_32) +#define __LIBM_SUBL_K80(r,x,y, t1) \ + if ( ((y)->ex+(y)->fphi.exponent-134 < \ + (x)->ex+(x)->fphi.exponent) && \ + ((x)->ex+(x)->fphi.exponent < \ + (y)->ex+(y)->fphi.exponent+134) && \ + !SIGNIFICAND_ZERO_80(&((x)->fphi)) && \ + !SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \ + { \ + /* y/2^134 < x < y*2^134, */ \ + /* and x,y are nonzero finite numbers */ \ + if ( (x)->ex != (y)->ex ) { \ + /* adjust x->ex to y->ex */ \ + /* t1 = 2^(x->ex - y->ex) */ \ + FP80(t1)->sign = 0; \ + FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \ + /* exponent is correct because */ \ + /* |x->ex - y->ex| = */ \ + /* = | (x->ex + x->fphi.exponent) - */ \ + /* -(y->ex + y->fphi.exponent) + */ \ + /* + y->fphi.exponent - */ \ + /* - x->fphi.exponent | < */ \ + /* < | (x->ex+x->fphi.exponent) - */ \ + /* -(y->ex+y->fphi.exponent) | + */ \ + /* +| y->fphi.exponent - */ \ + /* -x->fphi.exponent | < */ \ + /* < 134 + 16000 */ \ + FP80(t1)->hi_significand = 0x80000000; \ + FP80(t1)->lo_significand = 0x00000000; \ + (x)->ex = (y)->ex; \ + (x)->ldhi *= t1; \ + (x)->ldlo *= t1; \ + } \ + /* r==x+y */ \ + (r)->ex = (y)->ex; \ + __LIBM_SUBL2_K80( (r)->ldhi,(r)->ldlo, \ + (x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \ + } else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \ + ((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \ + (x)->ex+(x)->fphi.exponent-BIAS_80) ) \ + { \ + /* |x|<<|y| */ \ + (r)->ex = (y)->ex; \ + (r)->ldhi = -((y)->ldhi); \ + (r)->ldlo = -((y)->ldlo); \ + } else { \ + /* |y|<<|x| */ \ + *(r) = *(x); \ + } +#elif defined(SIZE_INT_64) +#define __LIBM_SUBL_K80(r,x,y, t1) \ + if ( ((y)->ex+(y)->fphi.exponent-134 < \ + (x)->ex+(x)->fphi.exponent) && \ + ((x)->ex+(x)->fphi.exponent < \ + (y)->ex+(y)->fphi.exponent+134) && \ + !SIGNIFICAND_ZERO_80(&((x)->fphi)) && \ + !SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \ + { \ + /* y/2^134 < x < y*2^134, */ \ + /* and x,y are nonzero finite numbers */ \ + if ( (x)->ex != (y)->ex ) { \ + /* adjust x->ex to y->ex */ \ + /* t1 = 2^(x->ex - y->ex) */ \ + FP80(t1)->sign = 0; \ + FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \ + /* exponent is correct because */ \ + /* |x->ex - y->ex| = */ \ + /* = | (x->ex + x->fphi.exponent) - */ \ + /* -(y->ex + y->fphi.exponent) + */ \ + /* + y->fphi.exponent - */ \ + /* - x->fphi.exponent | < */ \ + /* < | (x->ex+x->fphi.exponent) - */ \ + /* -(y->ex+y->fphi.exponent) | + */ \ + /* +| y->fphi.exponent - */ \ + /* -x->fphi.exponent | < */ \ + /* < 134 + 16000 */ \ + FP80(t1)->significand = 0x8000000000000000; \ + (x)->ex = (y)->ex; \ + (x)->ldhi *= t1; \ + (x)->ldlo *= t1; \ + } \ + /* r==x+y */ \ + (r)->ex = (y)->ex; \ + __LIBM_SUBL2_K80( (r)->ldhi,(r)->ldlo, \ + (x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \ + } else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \ + ((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \ + (x)->ex+(x)->fphi.exponent-BIAS_80) ) \ + { \ + /* |x|<<|y| */ \ + (r)->ex = (y)->ex; \ + (r)->ldhi = -((y)->ldhi); \ + (r)->ldlo = -((y)->ldlo); \ + } else { \ + /* |y|<<|x| */ \ + *(r) = *(x); \ + } +#endif + +/* Subtraction: r=x+y */ +/* Variables r,x,y are pointers to struct ker80, */ +/* all other variables are in long double precision */ +/* Temporary variables: t1 */ +/* Correct for any finite x and y */ +#define __LIBM_SUBL_NORM_K80(r,x,y, t1) \ + if ( ((x)->fphi.exponent-BIAS_80<-8000) || \ + ((x)->fphi.exponent-BIAS_80>+8000) || \ + ((y)->fphi.exponent-BIAS_80<-8000) || \ + ((y)->fphi.exponent-BIAS_80>+8000) ) \ + { \ + __libm_normalizel_k80(x); \ + __libm_normalizel_k80(y); \ + } \ + __LIBM_SUBL_K80(r,x,y, t1) + +/* Multiplication: x*y */ +/* The result is sum rhi+rlo */ +/* Here t32 is the constant 2^32+1 */ +/* Temporary variables: t1,t2,t3,t4,t5,t6 */ +/* All variables are in long double precision */ +/* Correct if no over/underflow (algorithm by T.J.Dekker) */ +#define __LIBM_MULL1_K80(rhi,rlo,x,y, \ + t32,t1,t2,t3,t4,t5,t6) \ + t1=(x)*(t32); t3=x-t1; t3=t3+t1; t4=x-t3; \ + t1=(y)*(t32); t5=y-t1; t5=t5+t1; t6=y-t5; \ + t1=(t3)*(t5); \ + t2=(t3)*(t6)+(t4)*(t5); \ + rhi=t1+t2; \ + rlo=t1-rhi; rlo=rlo+t2; rlo=rlo+(t4*t6); + +/* Multiplication: (xhi+xlo)*(yhi+ylo) */ +/* The result is sum rhi+rlo */ +/* Here t32 is the constant 2^32+1 */ +/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */ +/* All variables are in long double precision */ +/* Correct if no over/underflow (algorithm by T.J.Dekker) */ +#define __LIBM_MULL2_K80(rhi,rlo,xhi,xlo,yhi,ylo, \ + t32,t1,t2,t3,t4,t5,t6,t7,t8) \ + __LIBM_MULL1_K80(t7,t8,xhi,yhi, t32,t1,t2,t3,t4,t5,t6) \ + t1=(xhi)*(ylo)+(xlo)*(yhi); t1=t1+t8; \ + rhi=t7+t1; \ + rlo=t7-rhi; rlo=rlo+t1; + +/* Multiplication: r=x*y */ +/* Variables r,x,y are pointers to struct ker80, */ +/* all other variables are in long double precision */ +/* Here t32 is the constant 2^32+1 */ +/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */ +/* Correct if x and y belong to interval [2^-8000;2^8000] */ +#define __LIBM_MULL_K80(r,x,y, t32,t1,t2,t3,t4,t5,t6,t7,t8) \ + (r)->ex = (x)->ex + (y)->ex; \ + __LIBM_MULL2_K80((r)->ldhi,(r)->ldlo, \ + (x)->ldhi,(x)->ldlo,(y)->ldhi,(y)->ldlo, \ + t32,t1,t2,t3,t4,t5,t6,t7,t8) + +/* Multiplication: r=x*y */ +/* Variables r,x,y are pointers to struct ker80, */ +/* all other variables are in long double precision */ +/* Here t32 is the constant 2^32+1 */ +/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */ +/* Correct for any finite x and y */ +#define __LIBM_MULL_NORM_K80(r,x,y, \ + t32,t1,t2,t3,t4,t5,t6,t7,t8) \ + if ( ((x)->fphi.exponent-BIAS_80<-8000) || \ + ((x)->fphi.exponent-BIAS_80>+8000) || \ + ((y)->fphi.exponent-BIAS_80<-8000) || \ + ((y)->fphi.exponent-BIAS_80>+8000) ) \ + { \ + __libm_normalizel_k80(x); \ + __libm_normalizel_k80(y); \ + } \ + __LIBM_MULL_K80(r,x,y, t32,t1,t2,t3,t4,t5,t6,t7,t8) + +/* Division: (xhi+xlo)/(yhi+ylo) */ +/* The result is sum rhi+rlo */ +/* Here t32 is the constant 2^32+1 */ +/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */ +/* All variables are in long double precision */ +/* Correct if no over/underflow (algorithm by T.J.Dekker) */ +#define __LIBM_DIVL2_K80(rhi,rlo,xhi,xlo,yhi,ylo, \ + t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) \ + t7=(xhi)/(yhi); \ + __LIBM_MULL1_K80(t8,t9,t7,yhi, t32,t1,t2,t3,t4,t5,t6) \ + t1=xhi-t8; t1=t1-t9; t1=t1+xlo; t1=t1-(t7)*(ylo); \ + t1=(t1)/(yhi); \ + rhi=t7+t1; \ + rlo=t7-rhi; rlo=rlo+t1; + +/* Division: r=x/y */ +/* Variables r,x,y are pointers to struct ker80, */ +/* all other variables are in long double precision */ +/* Here t32 is the constant 2^32+1 */ +/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */ +/* Correct if x and y belong to interval [2^-8000;2^8000] */ +#define __LIBM_DIVL_K80(r,x,y, \ + t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) \ + (r)->ex = (x)->ex - (y)->ex; \ + __LIBM_DIVL2_K80( (r)->ldhi,(r)->ldlo, \ + (x)->ldhi,(x)->ldlo,(y)->ldhi,(y)->ldlo, \ + t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) + +/* Division: r=x/y */ +/* Variables r,x,y are pointers to struct ker80, */ +/* all other variables are in long double precision */ +/* Here t32 is the constant 2^32+1 */ +/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */ +/* Correct for any finite x and y */ +#define __LIBM_DIVL_NORM_K80(r,x,y, \ + t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) \ + if ( ((x)->fphi.exponent-BIAS_80<-8000) || \ + ((x)->fphi.exponent-BIAS_80>+8000) || \ + ((y)->fphi.exponent-BIAS_80<-8000) || \ + ((y)->fphi.exponent-BIAS_80>+8000) ) \ + { \ + __libm_normalizel_k80(x); \ + __libm_normalizel_k80(y); \ + } \ + __LIBM_DIVL_K80(r,x,y, t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) + +/* Square root: sqrt(xhi+xlo) */ +/* The result is sum rhi+rlo */ +/* Here t32 is the constant 2^32+1 */ +/* half is the constant 0.5 */ +/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */ +/* All variables are in long double precision */ +/* Correct for positive xhi+xlo (algorithm by T.J.Dekker) */ +#define __LIBM_SQRTL2_NORM_K80(rhi,rlo,xhi,xlo, \ + t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) \ + t7=sqrtl(xhi); \ + __LIBM_MULL1_K80(t8,t9,t7,t7, t32,t1,t2,t3,t4,t5,t6) \ + t1=xhi-t8; t1=t1-t9; t1=t1+xlo; t1=(t1)*(half); \ + t1=(t1)/(t7); \ + rhi=t7+t1; \ + rlo=t7-rhi; rlo=rlo+t1; + +/* Square root: r=sqrt(x) */ +/* Variables r,x,y are pointers to struct ker80, */ +/* all other variables are in long double precision */ +/* Here t32 is the constant 2^32+1 */ +/* half is the constant 0.5 */ +/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */ +/* Correct if x belongs to interval [2^-16000;2^16000] */ +#define __LIBM_SQRTL_K80(r,x, \ + t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) \ + if ( ((x)->ex & 1) == 1 ) { \ + (x)->ex = (x)->ex + 1; \ + (x)->ldhi *= half; \ + (x)->ldlo *= half; \ + } \ + (r)->ex = (x)->ex >> 1; \ + __LIBM_SQRTL2_NORM_K80( (r)->ldhi,(r)->ldlo, \ + (x)->ldhi,(x)->ldlo, \ + t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) + +/* Square root: r=sqrt(x) */ +/* Variables r,x,y are pointers to struct ker80, */ +/* all other variables are in long double precision */ +/* Here t32 is the constant 2^32+1 */ +/* half is the constant 0.5 */ +/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */ +/* Correct for any positive x */ +#define __LIBM_SQRTL_NORM_K80(r,x, \ + t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) \ + if ( ((x)->fphi.exponent-BIAS_80<-16000) || \ + ((x)->fphi.exponent-BIAS_80>+16000) ) \ + { \ + __libm_normalizel_k80(x); \ + } \ + __LIBM_SQRTL_K80(r,x, t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) + + +#ifdef __INTEL_COMPILER +#define ALIGN(n) __declspec(align(n)) +#else /* __INTEL_COMPILER */ +#define ALIGN(n) +#endif /* __INTEL_COMPILER */ + +/* macros to form a long double value in hex representation (unsigned short type) */ + +#if (defined(__unix__) && defined(__i386__)) +# define LDOUBLE_ALIGN 12 /* IA32 Linux: 12-byte alignment */ +#else /*__linux__ & IA32*/ +# define LDOUBLE_ALIGN 16 /* EFI2/IA32 Win or IPF Win/Linux: 16-byte alignment */ +#endif /*__linux__ & IA32*/ + +#if (LDOUBLE_ALIGN == 16) +#define _XPD_ ,0x0000,0x0000,0x0000 +#else /*12*/ +#define _XPD_ ,0x0000 +#endif + +#define LDOUBLE_HEX(w4,w3,w2,w1,w0) 0x##w0,0x##w1,0x##w2,0x##w3,0x##w4 _XPD_ /*LITTLE_ENDIAN*/ + +/* macros to sign-expand low 'num' bits of 'val' to native integer */ + +#if defined(SIZE_INT_32) +# define SIGN_EXPAND(val,num) ((int)(val) << (32-(num))) >> (32-(num)) /* sign expand of 'num' LSBs */ +#elif defined(SIZE_INT_64) +# define SIGN_EXPAND(val,num) ((int)(val) << (64-(num))) >> (64-(num)) /* sign expand of 'num' LSBs */ +#endif + +/* macros to form pointers to FP number on-the-fly */ + +#define FP32(f) ((struct fp32 *)&f) +#define FP64(d) ((struct fp64 *)&d) +#define FP80(ld) ((struct fp80 *)&ld) + +/* macros to extract signed low and high doubleword of long double */ + +#if defined(SIZE_INT_32) +# define HI_DWORD_80(ld) ((((FP80(ld)->sign << 15) | FP80(ld)->exponent) << 16) | \ + ((FP80(ld)->hi_significand >> 16) & 0xFFFF)) +# define LO_DWORD_80(ld) SIGN_EXPAND(FP80(ld)->lo_significand, 32) +#elif defined(SIZE_INT_64) +# define HI_DWORD_80(ld) ((((FP80(ld)->sign << 15) | FP80(ld)->exponent) << 16) | \ + ((FP80(ld)->significand >> 48) & 0xFFFF)) +# define LO_DWORD_80(ld) SIGN_EXPAND(FP80(ld)->significand, 32) +#endif + +/* macros to extract hi bits of significand. + * note that explicit high bit do not count (returns as is) + */ + +#if defined(SIZE_INT_32) +# define HI_SIGNIFICAND_80(X,NBITS) ((X)->hi_significand >> (31 - (NBITS))) +#elif defined(SIZE_INT_64) +# define HI_SIGNIFICAND_80(X,NBITS) ((X)->significand >> (63 - (NBITS))) +#endif + +/* macros to check, whether a significand bits are all zero, or some of them are non-zero. + * note that SIGNIFICAND_ZERO_80 tests high bit also, but SIGNIFICAND_NONZERO_80 does not + */ + +#define SIGNIFICAND_ZERO_32(X) ((X)->significand == 0) +#define SIGNIFICAND_NONZERO_32(X) ((X)->significand != 0) + +#if defined(SIZE_INT_32) +# define SIGNIFICAND_ZERO_64(X) (((X)->hi_significand == 0) && ((X)->lo_significand == 0)) +# define SIGNIFICAND_NONZERO_64(X) (((X)->hi_significand != 0) || ((X)->lo_significand != 0)) +#elif defined(SIZE_INT_64) +# define SIGNIFICAND_ZERO_64(X) ((X)->significand == 0) +# define SIGNIFICAND_NONZERO_64(X) ((X)->significand != 0) +#endif + +#if defined(SIZE_INT_32) +# define SIGNIFICAND_ZERO_80(X) (((X)->hi_significand == 0x00000000) && ((X)->lo_significand == 0)) +# define SIGNIFICAND_NONZERO_80(X) (((X)->hi_significand != 0x80000000) || ((X)->lo_significand != 0)) +#elif defined(SIZE_INT_64) +# define SIGNIFICAND_ZERO_80(X) ((X)->significand == 0x0000000000000000) +# define SIGNIFICAND_NONZERO_80(X) ((X)->significand != 0x8000000000000000) +#endif + +/* macros to compare long double with constant value, represented as hex */ + +#define SIGNIFICAND_EQ_HEX_32(X,BITS) ((X)->significand == 0x ## BITS) +#define SIGNIFICAND_GT_HEX_32(X,BITS) ((X)->significand > 0x ## BITS) +#define SIGNIFICAND_GE_HEX_32(X,BITS) ((X)->significand >= 0x ## BITS) +#define SIGNIFICAND_LT_HEX_32(X,BITS) ((X)->significand < 0x ## BITS) +#define SIGNIFICAND_LE_HEX_32(X,BITS) ((X)->significand <= 0x ## BITS) + +#if defined(SIZE_INT_32) +# define SIGNIFICAND_EQ_HEX_64(X,HI,LO) \ + (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand == 0x ## LO)) +# define SIGNIFICAND_GT_HEX_64(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \ + (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand > 0x ## LO))) +# define SIGNIFICAND_GE_HEX_64(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \ + (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand >= 0x ## LO))) +# define SIGNIFICAND_LT_HEX_64(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \ + (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand < 0x ## LO))) +# define SIGNIFICAND_LE_HEX_64(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \ + (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand <= 0x ## LO))) +#elif defined(SIZE_INT_64) +# define SIGNIFICAND_EQ_HEX_64(X,HI,LO) ((X)->significand == 0x ## HI ## LO) +# define SIGNIFICAND_GT_HEX_64(X,HI,LO) ((X)->significand > 0x ## HI ## LO) +# define SIGNIFICAND_GE_HEX_64(X,HI,LO) ((X)->significand >= 0x ## HI ## LO) +# define SIGNIFICAND_LT_HEX_64(X,HI,LO) ((X)->significand < 0x ## HI ## LO) +# define SIGNIFICAND_LE_HEX_64(X,HI,LO) ((X)->significand <= 0x ## HI ## LO) +#endif + +#if defined(SIZE_INT_32) +# define SIGNIFICAND_EQ_HEX_80(X,HI,LO) \ + (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand == 0x ## LO)) +# define SIGNIFICAND_GT_HEX_80(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \ + (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand > 0x ## LO))) +# define SIGNIFICAND_GE_HEX_80(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \ + (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand >= 0x ## LO))) +# define SIGNIFICAND_LT_HEX_80(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \ + (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand < 0x ## LO))) +# define SIGNIFICAND_LE_HEX_80(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \ + (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand <= 0x ## LO))) +#elif defined(SIZE_INT_64) +# define SIGNIFICAND_EQ_HEX_80(X,HI,LO) ((X)->significand == 0x ## HI ## LO) +# define SIGNIFICAND_GT_HEX_80(X,HI,LO) ((X)->significand > 0x ## HI ## LO) +# define SIGNIFICAND_GE_HEX_80(X,HI,LO) ((X)->significand >= 0x ## HI ## LO) +# define SIGNIFICAND_LT_HEX_80(X,HI,LO) ((X)->significand < 0x ## HI ## LO) +# define SIGNIFICAND_LE_HEX_80(X,HI,LO) ((X)->significand <= 0x ## HI ## LO) +#endif + +#define VALUE_EQ_HEX_32(X,EXP,BITS) \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_EQ_HEX_32(X, BITS))) +#define VALUE_GT_HEX_32(X,EXP,BITS) (((X)->exponent > (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_GT_HEX_32(X, BITS)))) +#define VALUE_GE_HEX_32(X,EXP,BITS) (((X)->exponent > (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_GE_HEX_32(X, BITS)))) +#define VALUE_LT_HEX_32(X,EXP,BITS) (((X)->exponent < (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_LT_HEX_32(X, BITS)))) +#define VALUE_LE_HEX_32(X,EXP,BITS) (((X)->exponent < (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_LE_HEX_32(X, BITS)))) + +#define VALUE_EQ_HEX_64(X,EXP,HI,LO) \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_EQ_HEX_64(X, HI, LO))) +#define VALUE_GT_HEX_64(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_GT_HEX_64(X, HI, LO)))) +#define VALUE_GE_HEX_64(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_GE_HEX_64(X, HI, LO)))) +#define VALUE_LT_HEX_64(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_LT_HEX_64(X, HI, LO)))) +#define VALUE_LE_HEX_64(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_LE_HEX_64(X, HI, LO)))) + +#define VALUE_EQ_HEX_80(X,EXP,HI,LO) \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_EQ_HEX_80(X, HI, LO))) +#define VALUE_GT_HEX_80(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_GT_HEX_80(X, HI, LO)))) +#define VALUE_GE_HEX_80(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_GE_HEX_80(X, HI, LO)))) +#define VALUE_LT_HEX_80(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_LT_HEX_80(X, HI, LO)))) +#define VALUE_LE_HEX_80(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \ + (((X)->exponent == (EXP)) && (SIGNIFICAND_LE_HEX_80(X, HI, LO)))) + +/* macros to compare two long doubles */ + +#define SIGNIFICAND_EQ_32(X,Y) ((X)->significand == (Y)->significand) +#define SIGNIFICAND_GT_32(X,Y) ((X)->significand > (Y)->significand) +#define SIGNIFICAND_GE_32(X,Y) ((X)->significand >= (Y)->significand) +#define SIGNIFICAND_LT_32(X,Y) ((X)->significand < (Y)->significand) +#define SIGNIFICAND_LE_32(X,Y) ((X)->significand <= (Y)->significand) + +#if defined(SIZE_INT_32) +# define SIGNIFICAND_EQ_64(X,Y) \ + (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand == (Y)->lo_significand)) +# define SIGNIFICAND_GT_64(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \ + (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand > (Y)->lo_significand))) +# define SIGNIFICAND_GE_64(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \ + (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand >= (Y)->lo_significand))) +# define SIGNIFICAND_LT_64(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \ + (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand < (Y)->lo_significand))) +# define SIGNIFICAND_LE_64(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \ + (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand <= (Y)->lo_significand))) +#elif defined(SIZE_INT_64) +# define SIGNIFICAND_EQ_64(X,Y) ((X)->significand == (Y)->significand) +# define SIGNIFICAND_GT_64(X,Y) ((X)->significand > (Y)->significand) +# define SIGNIFICAND_GE_64(X,Y) ((X)->significand >= (Y)->significand) +# define SIGNIFICAND_LT_64(X,Y) ((X)->significand < (Y)->significand) +# define SIGNIFICAND_LE_64(X,Y) ((X)->significand <= (Y)->significand) +#endif + +#if defined(SIZE_INT_32) +# define SIGNIFICAND_EQ_80(X,Y) \ + (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand == (Y)->lo_significand)) +# define SIGNIFICAND_GT_80(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \ + (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand > (Y)->lo_significand))) +# define SIGNIFICAND_GE_80(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \ + (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand >= (Y)->lo_significand))) +# define SIGNIFICAND_LT_80(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \ + (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand < (Y)->lo_significand))) +# define SIGNIFICAND_LE_80(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \ + (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand <= (Y)->lo_significand))) +#elif defined(SIZE_INT_64) +# define SIGNIFICAND_EQ_80(X,Y) ((X)->significand == (Y)->significand) +# define SIGNIFICAND_GT_80(X,Y) ((X)->significand > (Y)->significand) +# define SIGNIFICAND_GE_80(X,Y) ((X)->significand >= (Y)->significand) +# define SIGNIFICAND_LT_80(X,Y) ((X)->significand < (Y)->significand) +# define SIGNIFICAND_LE_80(X,Y) ((X)->significand <= (Y)->significand) +#endif + +#define VALUE_EQ_32(X,Y) \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_EQ_32(X, Y))) +#define VALUE_GT_32(X,Y) (((X)->exponent > (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GT_32(X, Y)))) +#define VALUE_GE_32(X,Y) (((X)->exponent > (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GE_32(X, Y)))) +#define VALUE_LT_32(X,Y) (((X)->exponent < (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LT_32(X, Y)))) +#define VALUE_LE_32(X,Y) (((X)->exponent < (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LE_32(X, Y)))) + +#define VALUE_EQ_64(X,Y) \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_EQ_64(X, Y))) +#define VALUE_GT_64(X,Y) (((X)->exponent > (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GT_64(X, Y)))) +#define VALUE_GE_64(X,Y) (((X)->exponent > (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GE_64(X, Y)))) +#define VALUE_LT_64(X,Y) (((X)->exponent < (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LT_64(X, Y)))) +#define VALUE_LE_64(X,Y) (((X)->exponent < (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LE_64(X, Y)))) + +#define VALUE_EQ_80(X,Y) \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_EQ_80(X, Y))) +#define VALUE_GT_80(X,Y) (((X)->exponent > (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GT_80(X, Y)))) +#define VALUE_GE_80(X,Y) (((X)->exponent > (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GE_80(X, Y)))) +#define VALUE_LT_80(X,Y) (((X)->exponent < (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LT_80(X, Y)))) +#define VALUE_LE_80(X,Y) (((X)->exponent < (Y)->exponent) || \ + (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LE_80(X, Y)))) + +/* add/subtract 1 ulp macros */ + +#if defined(SIZE_INT_32) +# define ADD_ULP_80(X) \ + if ((++(X)->lo_significand == 0) && \ + (++(X)->hi_significand == (((X)->exponent == 0) ? 0x80000000 : 0))) \ + { \ + (X)->hi_significand |= 0x80000000; \ + ++(X)->exponent; \ + } +# define SUB_ULP_80(X) \ + if (--(X)->lo_significand == 0xFFFFFFFF) { \ + --(X)->hi_significand; \ + if (((X)->exponent != 0) && \ + ((X)->hi_significand == 0x7FFFFFFF) && \ + (--(X)->exponent != 0)) \ + { \ + (X)->hi_significand |= 0x80000000; \ + } \ + } +#elif defined(SIZE_INT_64) +# define ADD_ULP_80(X) \ + if (++(X)->significand == (((X)->exponent == 0) ? 0x8000000000000000 : 0))) { \ + (X)->significand |= 0x8000000000000000; \ + ++(X)->exponent; \ + } +# define SUB_ULP_80(X) \ + { \ + --(X)->significand; \ + if (((X)->exponent != 0) && \ + ((X)->significand == 0x7FFFFFFFFFFFFFFF) && \ + (--(X)->exponent != 0)) \ + { \ + (X)->significand |= 0x8000000000000000; \ + } \ + } +#endif + + +/* error codes */ + +#define DOMAIN 1 /* argument domain error */ +#define SING 2 /* argument singularity */ +#define OVERFLOW 3 /* overflow range error */ +#define UNDERFLOW 4 /* underflow range error */ +#define TLOSS 5 /* total loss of precision */ +#define PLOSS 6 /* partial loss of precision */ + +/* */ + +#define VOLATILE_32 /*volatile*/ +#define VOLATILE_64 /*volatile*/ +#define VOLATILE_80 /*volatile*/ + +#define QUAD_TYPE _Quad + +#endif /*__LIBM_SUPPORT_H_INCLUDED__*/ |