about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/libm_sincosf.S
diff options
context:
space:
mode:
authorZack Weinberg <zackw@panix.com>2017-06-08 15:39:03 -0400
committerZack Weinberg <zackw@panix.com>2017-06-08 15:39:03 -0400
commit5046dbb4a7eba5eccfd258f92f4735c9ffc8d069 (patch)
tree4470480d904b65cf14ca524f96f79eca818c3eaf /sysdeps/ia64/fpu/libm_sincosf.S
parent199fc19d3aaaf57944ef036e15904febe877fc93 (diff)
downloadglibc-zack/build-layout-experiment.tar.gz
glibc-zack/build-layout-experiment.tar.xz
glibc-zack/build-layout-experiment.zip
Prepare for radical source tree reorganization. zack/build-layout-experiment
All top-level files and directories are moved into a temporary storage
directory, REORG.TODO, except for files that will certainly still
exist in their current form at top level when we're done (COPYING,
COPYING.LIB, LICENSES, NEWS, README), all old ChangeLog files (which
are moved to the new directory OldChangeLogs, instead), and the
generated file INSTALL (which is just deleted; in the new order, there
will be no generated files checked into version control).
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincosf.S')
-rw-r--r--sysdeps/ia64/fpu/libm_sincosf.S744
1 files changed, 0 insertions, 744 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincosf.S b/sysdeps/ia64/fpu/libm_sincosf.S
deleted file mode 100644
index 26e66fad6e..0000000000
--- a/sysdeps/ia64/fpu/libm_sincosf.S
+++ /dev/null
@@ -1,744 +0,0 @@
-.file "libm_sincosf.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/01/02 Initial version
-// 02/18/02 Large arguments processing routine is excluded.
-//          External interface entry points are added
-// 02/26/02 Added temporary return of results in r8, r9
-// 03/13/02 Corrected restore of predicate registers
-// 03/19/02 Added stack unwind around call to __libm_cisf_large
-// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16)
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 02/11/04 cisf is moved to the separate file.
-// 03/31/05 Reformatted delimiters between data tables
-
-// API
-//==============================================================
-// 1) void sincosf(float, float*s, float*c)
-// 2) __libm_sincosf - internal LIBM function, that accepts
-//    argument in f8 and returns cosine through f8, sine through f9
-
-//
-// Overview of operation
-//==============================================================
-//
-// Step 1
-// ======
-// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k  where k=4
-//    divide x by pi/2^k.
-//    Multiply by 2^k/pi.
-//    nfloat = Round result to integer (round-to-nearest)
-//
-// r = x -  nfloat * pi/2^k
-//    Do this as (x -  nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
-//    pi/2^k is stored as two numbers that when added make pi/2^k.
-//       pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-//    HIGH part is rounded to zero, LOW - to nearest
-//
-// x = (nfloat * pi/2^k) + r
-//    r is small enough that we can use a polynomial approximation
-//    and is referred to as the reduced argument.
-//
-// Step 3
-// ======
-// Take the unreduced part and remove the multiples of 2pi.
-// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
-//
-//    nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
-//    N * 2^(k+1)
-//    nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
-//    nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
-//    nfloat * pi/2^k = N2pi + M * pi/2^k
-//
-//
-// Sin(x) = Sin((nfloat * pi/2^k) + r)
-//        = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
-//
-//          Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
-//                               = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
-//                               = Sin(Mpi/2^k)
-//
-//          Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
-//                               = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
-//                               = Cos(Mpi/2^k)
-//
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-//
-// Step 4
-// ======
-// 0 <= M < 2^(k+1)
-// There are 2^(k+1) Sin entries in a table.
-// There are 2^(k+1) Cos entries in a table.
-//
-// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
-//
-//
-// Step 5
-// ======
-// Calculate Cos(r) and Sin(r) by polynomial approximation.
-//
-// Cos(r) = 1 + r^2 q1  + r^4 q2 = Series for Cos
-// Sin(r) = r + r^3 p1  + r^5 p2 = Series for Sin
-//
-// and the coefficients q1, q2 and p1, p2 are stored in a table
-//
-//
-// Calculate
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-// as follows
-//
-//    S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
-//    rsq = r*r
-//
-//
-//    P = p1 + r^2p2
-//    Q = q1 + r^2q2
-//
-//       rcub = r * rsq
-//       Sin(r) = r + rcub * P
-//              = r + r^3p1  + r^5p2 = Sin(r)
-//
-//       P =  r + rcub * P
-//
-//    Answer = S[m] Cos(r) + C[m] P
-//
-//       Cos(r) = 1 + rsq Q
-//       Cos(r) = 1 + r^2 Q
-//       Cos(r) = 1 + r^2 (q1 + r^2q2)
-//       Cos(r) = 1 + r^2q1 + r^4q2
-//
-//       S[m] Cos(r) = S[m](1 + rsq Q)
-//       S[m] Cos(r) = S[m] + S[m] rsq Q
-//       S[m] Cos(r) = S[m] + s_rsq Q
-//       Q           = S[m] + s_rsq Q
-//
-// Then,
-//
-//    Answer = Q + C[m] P
-
-
-// Registers used
-//==============================================================
-// general input registers:
-// r14 -> r19
-// r32 -> r49
-
-// predicate registers used:
-// p6 -> p14
-
-// floating-point registers used
-// f9 -> f15
-// f32 -> f100
-
-// Assembly macros
-//==============================================================
-
-cisf_Arg                     = f8
-
-cisf_Sin_res                 = f9
-cisf_Cos_res                 = f8
-
-
-cisf_NORM_f8                 = f10
-cisf_W                       = f11
-cisf_int_Nfloat              = f12
-cisf_Nfloat                  = f13
-
-cisf_r                       = f14
-cisf_r_exact                 = f68
-cisf_rsq                     = f15
-cisf_rcub                    = f32
-
-cisf_Inv_Pi_by_16            = f33
-cisf_Pi_by_16_hi             = f34
-cisf_Pi_by_16_lo             = f35
-
-cisf_Inv_Pi_by_64            = f36
-cisf_Pi_by_64_hi             = f37
-cisf_Pi_by_64_lo             = f38
-
-
-cisf_P1                      = f39
-cisf_Q1                      = f40
-cisf_P2                      = f41
-cisf_Q2                      = f42
-cisf_P3                      = f43
-cisf_Q3                      = f44
-cisf_P4                      = f45
-cisf_Q4                      = f46
-
-cisf_P_temp1                 = f47
-cisf_P_temp2                 = f48
-
-cisf_Q_temp1                 = f49
-cisf_Q_temp2                 = f50
-
-cisf_P                       = f51
-
-cisf_SIG_INV_PI_BY_16_2TO61  = f52
-cisf_RSHF_2TO61              = f53
-cisf_RSHF                    = f54
-cisf_2TOM61                  = f55
-cisf_NFLOAT                  = f56
-cisf_W_2TO61_RSH             = f57
-
-cisf_tmp                     = f58
-
-cisf_Sm_sin                  = f59
-cisf_Cm_sin                  = f60
-
-cisf_Sm_cos                  = f61
-cisf_Cm_cos                  = f62
-
-cisf_srsq_sin                = f63
-cisf_srsq_cos                = f64
-
-cisf_Q_sin                   = f65
-cisf_Q_cos                   = f66
-cisf_Q                       = f67
-
-/////////////////////////////////////////////////////////////
-
-cisf_pResSin                 = r33
-cisf_pResCos                 = r34
-
-cisf_exp_limit               = r35
-cisf_r_signexp               = r36
-cisf_AD_beta_table           = r37
-cisf_r_sincos                = r38
-
-cisf_r_exp                   = r39
-cisf_r_17_ones               = r40
-
-cisf_GR_sig_inv_pi_by_16     = r14
-cisf_GR_rshf_2to61           = r15
-cisf_GR_rshf                 = r16
-cisf_GR_exp_2tom61           = r17
-cisf_GR_n                    = r18
-
-cisf_GR_n_sin                = r19
-cisf_GR_m_sin                = r41
-cisf_GR_32m_sin              = r41
-
-cisf_GR_n_cos                = r42
-cisf_GR_m_cos                = r43
-cisf_GR_32m_cos              = r43
-
-cisf_AD_2_sin                = r44
-cisf_AD_2_cos                = r45
-
-cisf_gr_tmp                  = r46
-GR_SAVE_B0                   = r47
-GR_SAVE_GP                   = r48
-rB0_SAVED                    = r49
-GR_SAVE_PFS                  = r50
-GR_SAVE_PR                   = r51
-cisf_AD_1                    = r52
-
-RODATA
-
-.align 16
-// Pi/16 parts
-LOCAL_OBJECT_START(double_cisf_pi)
-   data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
-   data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
-LOCAL_OBJECT_END(double_cisf_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_cisf_pq_k4)
-   data8 0x3F810FABB668E9A2 // P2
-   data8 0x3FA552E3D6DE75C9 // Q2
-   data8 0xBFC555554447BC7F // P1
-   data8 0xBFDFFFFFC447610A // Q1
-LOCAL_OBJECT_END(double_cisf_pq_k4)
-
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
-    data8 0x0000000000000000 // sin ( 0 Pi / 16 )
-    data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
-//
-    data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
-    data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
-//
-    data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
-    data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
-//
-    data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
-    data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
-//
-    data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
-    data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
-//
-    data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
-    data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
-//
-    data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
-    data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
-//
-    data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
-    data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
-//
-    data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
-    data8 0x0000000000000000 // cos ( 8 Pi / 16 )
-//
-    data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
-    data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
-//
-    data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
-    data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
-//
-    data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
-    data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
-//
-    data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
-    data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
-//
-    data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
-    data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
-//
-    data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
-    data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
-//
-    data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
-    data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
-//
-    data8 0x0000000000000000 // sin ( 16 Pi / 16 )
-    data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
-//
-    data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
-    data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
-//
-    data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
-    data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
-//
-    data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
-    data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
-//
-    data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
-    data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
-//
-    data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
-    data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
-//
-    data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
-    data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
-//
-    data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
-    data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
-//
-    data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
-    data8 0x0000000000000000 // cos ( 24 Pi / 16 )
-//
-    data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
-    data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
-//
-    data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
-    data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
-//
-    data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
-    data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
-//
-    data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
-    data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
-//
-    data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
-    data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
-//
-    data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
-    data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
-//
-    data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
-    data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
-//
-    data8 0x0000000000000000 // sin ( 32 Pi / 16 )
-    data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
-
-.section .text
-
-GLOBAL_IEEE754_ENTRY(sincosf)
-// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
-{ .mlx
-      alloc         GR_SAVE_PFS              = ar.pfs, 0, 21, 0, 0
-      movl          cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd
-
-}
-// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
-      addl          cisf_AD_1           = @ltoff(double_cisf_pi), gp
-      movl          cisf_GR_rshf_2to61  = 0x47b8000000000000 // 1.1 2^(63+63-2)
-};;
-
-{ .mfi
-      ld8           cisf_AD_1           = [cisf_AD_1]
-      fnorm.s1      cisf_NORM_f8        = cisf_Arg
-      cmp.eq        p13, p14            = r0, r0 // p13 set for sincos
-}
-// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
-      mov           cisf_GR_exp_2tom61  = 0xffff-61
-      nop.i         0
-      br.cond.sptk  _CISF_COMMON
-};;
-GLOBAL_IEEE754_END(sincosf)
-
-GLOBAL_LIBM_ENTRY(__libm_sincosf)
-{ .mlx
-// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi
-      alloc         GR_SAVE_PFS              = ar.pfs,0,21,0,0
-      movl          cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
-}
-// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
-      addl          cisf_AD_1           = @ltoff(double_cisf_pi), gp
-      movl          cisf_GR_rshf_2to61  = 0x47b8000000000000
-};;
-
-// p14 set for __libm_sincos and cis
-{ .mfi
-      ld8           cisf_AD_1           = [cisf_AD_1]
-      fnorm.s1      cisf_NORM_f8        = cisf_Arg
-      cmp.eq        p14, p13            = r0, r0
-}
-// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
-      mov           cisf_GR_exp_2tom61  = 0xffff-61
-      nop.i         0
-      nop.b         0
-};;
-
-_CISF_COMMON:
-//  Form two constants we need
-//  16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
-//  1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
-//  fcmp used to set denormal, and invalid on snans
-{ .mfi
-      setf.sig      cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16
-      fclass.m      p6,p0                       = cisf_Arg, 0xe7//if x=0,inf,nan
-      addl          cisf_gr_tmp                 = -1, r0
-}
-// cisf_GR_rshf = 1.1000 2^63 for right shift
-{ .mlx
-      setf.d        cisf_RSHF_2TO61     = cisf_GR_rshf_2to61
-      movl          cisf_GR_rshf        = 0x43e8000000000000
-};;
-
-//  Form another constant
-//  2^-61 for scaling Nfloat
-//  0x10017 is register_bias + 24.
-//  So if f8 >= 2^24, go to large args routine
-{ .mmi
-      getf.exp      cisf_r_signexp      = cisf_Arg
-      setf.exp      cisf_2TOM61         = cisf_GR_exp_2tom61
-      mov           cisf_exp_limit      = 0x10017
-};;
-
-// Load the two pieces of pi/16
-// Form another constant
-//  1.1000...000 * 2^63, the right shift constant
-{ .mmb
-      ldfe          cisf_Pi_by_16_hi    = [cisf_AD_1],16
-      setf.d        cisf_RSHF           = cisf_GR_rshf
-(p6)  br.cond.spnt  _CISF_SPECIAL_ARGS
-};;
-
-{ .mmi
-      ldfe          cisf_Pi_by_16_lo    = [cisf_AD_1],16
-      setf.sig      cisf_tmp            = cisf_gr_tmp //constant for inexact set
-      nop.i         0
-};;
-
-// Start loading P, Q coefficients
-{ .mmi
-      ldfpd         cisf_P2,cisf_Q2     = [cisf_AD_1],16
-      nop.m         0
-      dep.z         cisf_r_exp          = cisf_r_signexp, 0, 17
-};;
-
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is >= 0x10017
-{ .mmb
-      ldfpd         cisf_P1,cisf_Q1     = [cisf_AD_1], 16
-      cmp.ge        p10, p0             = cisf_r_exp, cisf_exp_limit
-(p10) br.cond.spnt  _CISF_LARGE_ARGS    // go to |x| >= 2^24 path
-};;
-
-// cisf_W          = x * cisf_Inv_Pi_by_16
-// Multiply x by scaled 16/pi and add large const to shift integer part of W to
-//   rightmost bits of significand
-{ .mfi
-      nop.m  0
-      fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61
-      nop.i  0
-};;
-
-// cisf_NFLOAT = Round_Int_Nearest(cisf_W)
-{ .mfi
-      nop.m         0
-      fms.s1        cisf_NFLOAT         = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF
-      nop.i         0
-};;
-
-// N = (int)cisf_int_Nfloat
-{ .mfi
-      getf.sig      cisf_GR_n           = cisf_W_2TO61_RSH
-      nop.f         0
-      nop.i         0
-};;
-
-// Add 2^(k-1) (which is in cisf_r_sincos) to N
-// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x
-// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo
-{ .mfi
-      add     cisf_GR_n_cos = 0x8, cisf_GR_n
-      fnma.s1 cisf_r        = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8
-      nop.i   0
-};;
-
-//Get M (least k+1 bits of N)
-{ .mmi
-      and           cisf_GR_m_sin       = 0x1f,cisf_GR_n
-      and           cisf_GR_m_cos       = 0x1f,cisf_GR_n_cos
-      nop.i         0
-};;
-
-{ .mmi
-      shladd        cisf_AD_2_cos       = cisf_GR_m_cos,4, cisf_AD_1
-      shladd        cisf_AD_2_sin       = cisf_GR_m_sin,4, cisf_AD_1
-      nop.i         0
-};;
-
-// den. input to set uflow
-{ .mmf
-      ldfpd         cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin]
-      ldfpd         cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos]
-      fclass.m.unc  p10,p0                   = cisf_Arg,0x0b
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_rsq            = cisf_r, cisf_r,   f0  // get r^2
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fmpy.s0       cisf_tmp            = cisf_tmp,cisf_tmp // inexact flag
-      nop.i         0
-};;
-
-{ .mmf
-      nop.m         0
-      nop.m         0
-      fnma.s1       cisf_r_exact        = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_P              = cisf_rsq, cisf_P2, cisf_P1
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_Q              = cisf_rsq, cisf_Q2, cisf_Q1
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fmpy.s1       cisf_rcub           = cisf_r_exact, cisf_rsq // get r^3
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fmpy.s1       cisf_srsq_sin       = cisf_Sm_sin,cisf_rsq
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fmpy.s1       cisf_srsq_cos       = cisf_Sm_cos,cisf_rsq
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_P              = cisf_rcub,cisf_P,cisf_r_exact
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_Q_sin          = cisf_srsq_sin,cisf_Q, cisf_Sm_sin
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_Q_cos          = cisf_srsq_cos,cisf_Q, cisf_Sm_cos
-      nop.i         0
-};;
-
-// If den. arg, force underflow to be set
-{ .mfi
-      nop.m         0
-(p10) fmpy.s.s0     cisf_tmp            = cisf_Arg,cisf_Arg
-      nop.i         0
-};;
-
-//Final sin
-{ .mfi
-      nop.m         0
-      fma.s.s0      cisf_Sin_res        = cisf_Cm_sin, cisf_P, cisf_Q_sin
-      nop.i         0
-}
-//Final cos
-{ .mfb
-      nop.m         0
-      fma.s.s0      cisf_Cos_res    = cisf_Cm_cos, cisf_P, cisf_Q_cos
-(p14) br.cond.sptk  _CISF_RETURN //com. exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
-      stfs          [cisf_pResSin]      = cisf_Sin_res
-      stfs          [cisf_pResCos]      = cisf_Cos_res
-      br.ret.sptk   b0 // common exit for sincos main path
-};;
-
-_CISF_SPECIAL_ARGS:
-// sinf(+/-0) = +/-0
-// sinf(Inf)  = NaN
-// sinf(NaN)  = NaN
-{ .mfi
-      nop.m         999
-      fma.s.s0      cisf_Sin_res        = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
-      nop.i         999
-};;
-
-// cosf(+/-0) = 1.0
-// cosf(Inf)  = NaN
-// cosf(NaN)  = NaN
-{ .mfb
-      nop.m         999
-      fma.s.s0      cisf_Cos_res        = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
-(p14) br.cond.sptk  _CISF_RETURN //spec exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
-      stfs          [cisf_pResSin]      = cisf_Sin_res
-      stfs          [cisf_pResCos]      = cisf_Cos_res
-      br.ret.sptk   b0 // special exit for sincos main path
-};;
-
- // exit for sincos
- // NOTE! r8 and r9 used only because of compiler issue
- // connected with float point complex function arguments pass
- // After fix of this issue this operations can be deleted
-_CISF_RETURN:
-{ .mmb
-      getf.s        r8                  = cisf_Cos_res
-      getf.s        r9                  = cisf_Sin_res
-      br.ret.sptk   b0 // exit for sincos
-};;
-GLOBAL_LIBM_END(__libm_sincosf)
-
-////  |x| > 2^24 path  ///////
-.proc _CISF_LARGE_ARGS
-_CISF_LARGE_ARGS:
-.prologue
-{ .mfi
-      nop.m         0
-      nop.f         0
-.save ar.pfs, GR_SAVE_PFS
-      mov           GR_SAVE_PFS         = ar.pfs
-};;
-
-{ .mfi
-      mov           GR_SAVE_GP          = gp
-      nop.f         0
-.save b0, GR_SAVE_B0
-      mov           GR_SAVE_B0          = b0
-};;
-
-.body
-// Call of huge arguments sincos
-{ .mib
-      nop.m         0
-      mov           GR_SAVE_PR          = pr
-      br.call.sptk  b0                  = __libm_sincos_large
-};;
-
-{ .mfi
-      mov           gp                  = GR_SAVE_GP
-      nop.f         0
-      mov           pr                  = GR_SAVE_PR, 0x1fffe
-}
-;;
-
-{ .mfi
-      nop.m         0
-      nop.f         0
-      mov           b0                  = GR_SAVE_B0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.s.s0      cisf_Cos_res        = cisf_Cos_res, f1, f0
-      mov           ar.pfs              = GR_SAVE_PFS
-}
-// exit for |x| > 2^24 path (__libm_sincos and cis)
-{ .mfb
-      nop.m         0
-      fma.s.s0      cisf_Sin_res        = cisf_Sin_res, f1, f0
-(p14) br.cond.sptk  _CISF_RETURN
-};;
-
-{ .mmb
-      stfs          [cisf_pResSin]      = cisf_Sin_res
-      stfs          [cisf_pResCos]      = cisf_Cos_res
-      br.ret.sptk   b0 // exit for sincos |x| > 2^24 path
-};;
-
-.endp _CISF_LARGE_ARGS
-
-.type   __libm_sincos_large#,@function
-.global __libm_sincos_large#