about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/libm_sincosf.S
diff options
context:
space:
mode:
authorMike Frysinger <vapier@gentoo.org>2014-02-15 22:07:25 -0500
committerMike Frysinger <vapier@gentoo.org>2014-02-16 01:12:38 -0500
commitc70a4b1db0cf5e813ae24b0fa96a352399eb6edf (patch)
tree5a36b0f0955682ae5232907d04fdf68589990783 /sysdeps/ia64/fpu/libm_sincosf.S
parent591aeaf7a99bc9aa9179f013114d92496952dced (diff)
downloadglibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.tar.gz
glibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.tar.xz
glibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.zip
ia64: relocate out of ports/ subdir
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincosf.S')
-rw-r--r--sysdeps/ia64/fpu/libm_sincosf.S744
1 files changed, 744 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincosf.S b/sysdeps/ia64/fpu/libm_sincosf.S
new file mode 100644
index 0000000000..26e66fad6e
--- /dev/null
+++ b/sysdeps/ia64/fpu/libm_sincosf.S
@@ -0,0 +1,744 @@
+.file "libm_sincosf.s"
+
+
+// Copyright (c) 2002 - 2005, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2002 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+// History
+//==============================================================
+// 02/01/02 Initial version
+// 02/18/02 Large arguments processing routine is excluded.
+//          External interface entry points are added
+// 02/26/02 Added temporary return of results in r8, r9
+// 03/13/02 Corrected restore of predicate registers
+// 03/19/02 Added stack unwind around call to __libm_cisf_large
+// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16)
+// 02/10/03 Reordered header: .section, .global, .proc, .align
+// 02/11/04 cisf is moved to the separate file.
+// 03/31/05 Reformatted delimiters between data tables
+
+// API
+//==============================================================
+// 1) void sincosf(float, float*s, float*c)
+// 2) __libm_sincosf - internal LIBM function, that accepts
+//    argument in f8 and returns cosine through f8, sine through f9
+
+//
+// Overview of operation
+//==============================================================
+//
+// Step 1
+// ======
+// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k  where k=4
+//    divide x by pi/2^k.
+//    Multiply by 2^k/pi.
+//    nfloat = Round result to integer (round-to-nearest)
+//
+// r = x -  nfloat * pi/2^k
+//    Do this as (x -  nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
+//    pi/2^k is stored as two numbers that when added make pi/2^k.
+//       pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
+//    HIGH part is rounded to zero, LOW - to nearest
+//
+// x = (nfloat * pi/2^k) + r
+//    r is small enough that we can use a polynomial approximation
+//    and is referred to as the reduced argument.
+//
+// Step 3
+// ======
+// Take the unreduced part and remove the multiples of 2pi.
+// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
+//
+//    nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
+//    N * 2^(k+1)
+//    nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
+//    nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
+//    nfloat * pi/2^k = N2pi + M * pi/2^k
+//
+//
+// Sin(x) = Sin((nfloat * pi/2^k) + r)
+//        = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
+//
+//          Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
+//                               = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
+//                               = Sin(Mpi/2^k)
+//
+//          Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
+//                               = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
+//                               = Cos(Mpi/2^k)
+//
+// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
+//
+//
+// Step 4
+// ======
+// 0 <= M < 2^(k+1)
+// There are 2^(k+1) Sin entries in a table.
+// There are 2^(k+1) Cos entries in a table.
+//
+// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
+//
+//
+// Step 5
+// ======
+// Calculate Cos(r) and Sin(r) by polynomial approximation.
+//
+// Cos(r) = 1 + r^2 q1  + r^4 q2 = Series for Cos
+// Sin(r) = r + r^3 p1  + r^5 p2 = Series for Sin
+//
+// and the coefficients q1, q2 and p1, p2 are stored in a table
+//
+//
+// Calculate
+// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
+//
+// as follows
+//
+//    S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
+//    rsq = r*r
+//
+//
+//    P = p1 + r^2p2
+//    Q = q1 + r^2q2
+//
+//       rcub = r * rsq
+//       Sin(r) = r + rcub * P
+//              = r + r^3p1  + r^5p2 = Sin(r)
+//
+//       P =  r + rcub * P
+//
+//    Answer = S[m] Cos(r) + C[m] P
+//
+//       Cos(r) = 1 + rsq Q
+//       Cos(r) = 1 + r^2 Q
+//       Cos(r) = 1 + r^2 (q1 + r^2q2)
+//       Cos(r) = 1 + r^2q1 + r^4q2
+//
+//       S[m] Cos(r) = S[m](1 + rsq Q)
+//       S[m] Cos(r) = S[m] + S[m] rsq Q
+//       S[m] Cos(r) = S[m] + s_rsq Q
+//       Q           = S[m] + s_rsq Q
+//
+// Then,
+//
+//    Answer = Q + C[m] P
+
+
+// Registers used
+//==============================================================
+// general input registers:
+// r14 -> r19
+// r32 -> r49
+
+// predicate registers used:
+// p6 -> p14
+
+// floating-point registers used
+// f9 -> f15
+// f32 -> f100
+
+// Assembly macros
+//==============================================================
+
+cisf_Arg                     = f8
+
+cisf_Sin_res                 = f9
+cisf_Cos_res                 = f8
+
+
+cisf_NORM_f8                 = f10
+cisf_W                       = f11
+cisf_int_Nfloat              = f12
+cisf_Nfloat                  = f13
+
+cisf_r                       = f14
+cisf_r_exact                 = f68
+cisf_rsq                     = f15
+cisf_rcub                    = f32
+
+cisf_Inv_Pi_by_16            = f33
+cisf_Pi_by_16_hi             = f34
+cisf_Pi_by_16_lo             = f35
+
+cisf_Inv_Pi_by_64            = f36
+cisf_Pi_by_64_hi             = f37
+cisf_Pi_by_64_lo             = f38
+
+
+cisf_P1                      = f39
+cisf_Q1                      = f40
+cisf_P2                      = f41
+cisf_Q2                      = f42
+cisf_P3                      = f43
+cisf_Q3                      = f44
+cisf_P4                      = f45
+cisf_Q4                      = f46
+
+cisf_P_temp1                 = f47
+cisf_P_temp2                 = f48
+
+cisf_Q_temp1                 = f49
+cisf_Q_temp2                 = f50
+
+cisf_P                       = f51
+
+cisf_SIG_INV_PI_BY_16_2TO61  = f52
+cisf_RSHF_2TO61              = f53
+cisf_RSHF                    = f54
+cisf_2TOM61                  = f55
+cisf_NFLOAT                  = f56
+cisf_W_2TO61_RSH             = f57
+
+cisf_tmp                     = f58
+
+cisf_Sm_sin                  = f59
+cisf_Cm_sin                  = f60
+
+cisf_Sm_cos                  = f61
+cisf_Cm_cos                  = f62
+
+cisf_srsq_sin                = f63
+cisf_srsq_cos                = f64
+
+cisf_Q_sin                   = f65
+cisf_Q_cos                   = f66
+cisf_Q                       = f67
+
+/////////////////////////////////////////////////////////////
+
+cisf_pResSin                 = r33
+cisf_pResCos                 = r34
+
+cisf_exp_limit               = r35
+cisf_r_signexp               = r36
+cisf_AD_beta_table           = r37
+cisf_r_sincos                = r38
+
+cisf_r_exp                   = r39
+cisf_r_17_ones               = r40
+
+cisf_GR_sig_inv_pi_by_16     = r14
+cisf_GR_rshf_2to61           = r15
+cisf_GR_rshf                 = r16
+cisf_GR_exp_2tom61           = r17
+cisf_GR_n                    = r18
+
+cisf_GR_n_sin                = r19
+cisf_GR_m_sin                = r41
+cisf_GR_32m_sin              = r41
+
+cisf_GR_n_cos                = r42
+cisf_GR_m_cos                = r43
+cisf_GR_32m_cos              = r43
+
+cisf_AD_2_sin                = r44
+cisf_AD_2_cos                = r45
+
+cisf_gr_tmp                  = r46
+GR_SAVE_B0                   = r47
+GR_SAVE_GP                   = r48
+rB0_SAVED                    = r49
+GR_SAVE_PFS                  = r50
+GR_SAVE_PR                   = r51
+cisf_AD_1                    = r52
+
+RODATA
+
+.align 16
+// Pi/16 parts
+LOCAL_OBJECT_START(double_cisf_pi)
+   data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
+   data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
+LOCAL_OBJECT_END(double_cisf_pi)
+
+// Coefficients for polynomials
+LOCAL_OBJECT_START(double_cisf_pq_k4)
+   data8 0x3F810FABB668E9A2 // P2
+   data8 0x3FA552E3D6DE75C9 // Q2
+   data8 0xBFC555554447BC7F // P1
+   data8 0xBFDFFFFFC447610A // Q1
+LOCAL_OBJECT_END(double_cisf_pq_k4)
+
+// Sincos table (S[m], C[m])
+LOCAL_OBJECT_START(double_sin_cos_beta_k4)
+    data8 0x0000000000000000 // sin ( 0 Pi / 16 )
+    data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
+//
+    data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
+    data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
+//
+    data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
+    data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
+//
+    data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
+    data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
+//
+    data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
+    data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
+//
+    data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
+    data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
+//
+    data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
+    data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
+//
+    data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
+    data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
+//
+    data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
+    data8 0x0000000000000000 // cos ( 8 Pi / 16 )
+//
+    data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
+    data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
+//
+    data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
+    data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
+//
+    data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
+    data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
+//
+    data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
+    data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
+//
+    data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
+    data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
+//
+    data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
+    data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
+//
+    data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
+    data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
+//
+    data8 0x0000000000000000 // sin ( 16 Pi / 16 )
+    data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
+//
+    data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
+    data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
+//
+    data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
+    data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
+//
+    data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
+    data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
+//
+    data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
+    data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
+//
+    data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
+    data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
+//
+    data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
+    data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
+//
+    data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
+    data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
+//
+    data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
+    data8 0x0000000000000000 // cos ( 24 Pi / 16 )
+//
+    data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
+    data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
+//
+    data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
+    data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
+//
+    data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
+    data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
+//
+    data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
+    data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
+//
+    data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
+    data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
+//
+    data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
+    data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
+//
+    data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
+    data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
+//
+    data8 0x0000000000000000 // sin ( 32 Pi / 16 )
+    data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
+LOCAL_OBJECT_END(double_sin_cos_beta_k4)
+
+.section .text
+
+GLOBAL_IEEE754_ENTRY(sincosf)
+// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
+{ .mlx
+      alloc         GR_SAVE_PFS              = ar.pfs, 0, 21, 0, 0
+      movl          cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd
+
+}
+// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
+{ .mlx
+      addl          cisf_AD_1           = @ltoff(double_cisf_pi), gp
+      movl          cisf_GR_rshf_2to61  = 0x47b8000000000000 // 1.1 2^(63+63-2)
+};;
+
+{ .mfi
+      ld8           cisf_AD_1           = [cisf_AD_1]
+      fnorm.s1      cisf_NORM_f8        = cisf_Arg
+      cmp.eq        p13, p14            = r0, r0 // p13 set for sincos
+}
+// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
+{ .mib
+      mov           cisf_GR_exp_2tom61  = 0xffff-61
+      nop.i         0
+      br.cond.sptk  _CISF_COMMON
+};;
+GLOBAL_IEEE754_END(sincosf)
+
+GLOBAL_LIBM_ENTRY(__libm_sincosf)
+{ .mlx
+// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi
+      alloc         GR_SAVE_PFS              = ar.pfs,0,21,0,0
+      movl          cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
+}
+// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2)
+{ .mlx
+      addl          cisf_AD_1           = @ltoff(double_cisf_pi), gp
+      movl          cisf_GR_rshf_2to61  = 0x47b8000000000000
+};;
+
+// p14 set for __libm_sincos and cis
+{ .mfi
+      ld8           cisf_AD_1           = [cisf_AD_1]
+      fnorm.s1      cisf_NORM_f8        = cisf_Arg
+      cmp.eq        p14, p13            = r0, r0
+}
+// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61
+{ .mib
+      mov           cisf_GR_exp_2tom61  = 0xffff-61
+      nop.i         0
+      nop.b         0
+};;
+
+_CISF_COMMON:
+//  Form two constants we need
+//  16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
+//  1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
+//  fcmp used to set denormal, and invalid on snans
+{ .mfi
+      setf.sig      cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16
+      fclass.m      p6,p0                       = cisf_Arg, 0xe7//if x=0,inf,nan
+      addl          cisf_gr_tmp                 = -1, r0
+}
+// cisf_GR_rshf = 1.1000 2^63 for right shift
+{ .mlx
+      setf.d        cisf_RSHF_2TO61     = cisf_GR_rshf_2to61
+      movl          cisf_GR_rshf        = 0x43e8000000000000
+};;
+
+//  Form another constant
+//  2^-61 for scaling Nfloat
+//  0x10017 is register_bias + 24.
+//  So if f8 >= 2^24, go to large args routine
+{ .mmi
+      getf.exp      cisf_r_signexp      = cisf_Arg
+      setf.exp      cisf_2TOM61         = cisf_GR_exp_2tom61
+      mov           cisf_exp_limit      = 0x10017
+};;
+
+// Load the two pieces of pi/16
+// Form another constant
+//  1.1000...000 * 2^63, the right shift constant
+{ .mmb
+      ldfe          cisf_Pi_by_16_hi    = [cisf_AD_1],16
+      setf.d        cisf_RSHF           = cisf_GR_rshf
+(p6)  br.cond.spnt  _CISF_SPECIAL_ARGS
+};;
+
+{ .mmi
+      ldfe          cisf_Pi_by_16_lo    = [cisf_AD_1],16
+      setf.sig      cisf_tmp            = cisf_gr_tmp //constant for inexact set
+      nop.i         0
+};;
+
+// Start loading P, Q coefficients
+{ .mmi
+      ldfpd         cisf_P2,cisf_Q2     = [cisf_AD_1],16
+      nop.m         0
+      dep.z         cisf_r_exp          = cisf_r_signexp, 0, 17
+};;
+
+// p10 is true if we must call routines to handle larger arguments
+// p10 is true if f8 exp is >= 0x10017
+{ .mmb
+      ldfpd         cisf_P1,cisf_Q1     = [cisf_AD_1], 16
+      cmp.ge        p10, p0             = cisf_r_exp, cisf_exp_limit
+(p10) br.cond.spnt  _CISF_LARGE_ARGS    // go to |x| >= 2^24 path
+};;
+
+// cisf_W          = x * cisf_Inv_Pi_by_16
+// Multiply x by scaled 16/pi and add large const to shift integer part of W to
+//   rightmost bits of significand
+{ .mfi
+      nop.m  0
+      fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61
+      nop.i  0
+};;
+
+// cisf_NFLOAT = Round_Int_Nearest(cisf_W)
+{ .mfi
+      nop.m         0
+      fms.s1        cisf_NFLOAT         = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF
+      nop.i         0
+};;
+
+// N = (int)cisf_int_Nfloat
+{ .mfi
+      getf.sig      cisf_GR_n           = cisf_W_2TO61_RSH
+      nop.f         0
+      nop.i         0
+};;
+
+// Add 2^(k-1) (which is in cisf_r_sincos) to N
+// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x
+// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo
+{ .mfi
+      add     cisf_GR_n_cos = 0x8, cisf_GR_n
+      fnma.s1 cisf_r        = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8
+      nop.i   0
+};;
+
+//Get M (least k+1 bits of N)
+{ .mmi
+      and           cisf_GR_m_sin       = 0x1f,cisf_GR_n
+      and           cisf_GR_m_cos       = 0x1f,cisf_GR_n_cos
+      nop.i         0
+};;
+
+{ .mmi
+      shladd        cisf_AD_2_cos       = cisf_GR_m_cos,4, cisf_AD_1
+      shladd        cisf_AD_2_sin       = cisf_GR_m_sin,4, cisf_AD_1
+      nop.i         0
+};;
+
+// den. input to set uflow
+{ .mmf
+      ldfpd         cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin]
+      ldfpd         cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos]
+      fclass.m.unc  p10,p0                   = cisf_Arg,0x0b
+};;
+
+{ .mfi
+      nop.m         0
+      fma.s1        cisf_rsq            = cisf_r, cisf_r,   f0  // get r^2
+      nop.i         0
+}
+{ .mfi
+      nop.m         0
+      fmpy.s0       cisf_tmp            = cisf_tmp,cisf_tmp // inexact flag
+      nop.i         0
+};;
+
+{ .mmf
+      nop.m         0
+      nop.m         0
+      fnma.s1       cisf_r_exact        = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r
+};;
+
+{ .mfi
+      nop.m         0
+      fma.s1        cisf_P              = cisf_rsq, cisf_P2, cisf_P1
+      nop.i         0
+}
+{ .mfi
+      nop.m         0
+      fma.s1        cisf_Q              = cisf_rsq, cisf_Q2, cisf_Q1
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fmpy.s1       cisf_rcub           = cisf_r_exact, cisf_rsq // get r^3
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fmpy.s1       cisf_srsq_sin       = cisf_Sm_sin,cisf_rsq
+      nop.i         0
+}
+{ .mfi
+      nop.m         0
+      fmpy.s1       cisf_srsq_cos       = cisf_Sm_cos,cisf_rsq
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fma.s1        cisf_P              = cisf_rcub,cisf_P,cisf_r_exact
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fma.s1        cisf_Q_sin          = cisf_srsq_sin,cisf_Q, cisf_Sm_sin
+      nop.i         0
+}
+{ .mfi
+      nop.m         0
+      fma.s1        cisf_Q_cos          = cisf_srsq_cos,cisf_Q, cisf_Sm_cos
+      nop.i         0
+};;
+
+// If den. arg, force underflow to be set
+{ .mfi
+      nop.m         0
+(p10) fmpy.s.s0     cisf_tmp            = cisf_Arg,cisf_Arg
+      nop.i         0
+};;
+
+//Final sin
+{ .mfi
+      nop.m         0
+      fma.s.s0      cisf_Sin_res        = cisf_Cm_sin, cisf_P, cisf_Q_sin
+      nop.i         0
+}
+//Final cos
+{ .mfb
+      nop.m         0
+      fma.s.s0      cisf_Cos_res    = cisf_Cm_cos, cisf_P, cisf_Q_cos
+(p14) br.cond.sptk  _CISF_RETURN //com. exit for __libm_sincos and cis main path
+};;
+
+{ .mmb
+      stfs          [cisf_pResSin]      = cisf_Sin_res
+      stfs          [cisf_pResCos]      = cisf_Cos_res
+      br.ret.sptk   b0 // common exit for sincos main path
+};;
+
+_CISF_SPECIAL_ARGS:
+// sinf(+/-0) = +/-0
+// sinf(Inf)  = NaN
+// sinf(NaN)  = NaN
+{ .mfi
+      nop.m         999
+      fma.s.s0      cisf_Sin_res        = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
+      nop.i         999
+};;
+
+// cosf(+/-0) = 1.0
+// cosf(Inf)  = NaN
+// cosf(NaN)  = NaN
+{ .mfb
+      nop.m         999
+      fma.s.s0      cisf_Cos_res        = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
+(p14) br.cond.sptk  _CISF_RETURN //spec exit for __libm_sincos and cis main path
+};;
+
+{ .mmb
+      stfs          [cisf_pResSin]      = cisf_Sin_res
+      stfs          [cisf_pResCos]      = cisf_Cos_res
+      br.ret.sptk   b0 // special exit for sincos main path
+};;
+
+ // exit for sincos
+ // NOTE! r8 and r9 used only because of compiler issue
+ // connected with float point complex function arguments pass
+ // After fix of this issue this operations can be deleted
+_CISF_RETURN:
+{ .mmb
+      getf.s        r8                  = cisf_Cos_res
+      getf.s        r9                  = cisf_Sin_res
+      br.ret.sptk   b0 // exit for sincos
+};;
+GLOBAL_LIBM_END(__libm_sincosf)
+
+////  |x| > 2^24 path  ///////
+.proc _CISF_LARGE_ARGS
+_CISF_LARGE_ARGS:
+.prologue
+{ .mfi
+      nop.m         0
+      nop.f         0
+.save ar.pfs, GR_SAVE_PFS
+      mov           GR_SAVE_PFS         = ar.pfs
+};;
+
+{ .mfi
+      mov           GR_SAVE_GP          = gp
+      nop.f         0
+.save b0, GR_SAVE_B0
+      mov           GR_SAVE_B0          = b0
+};;
+
+.body
+// Call of huge arguments sincos
+{ .mib
+      nop.m         0
+      mov           GR_SAVE_PR          = pr
+      br.call.sptk  b0                  = __libm_sincos_large
+};;
+
+{ .mfi
+      mov           gp                  = GR_SAVE_GP
+      nop.f         0
+      mov           pr                  = GR_SAVE_PR, 0x1fffe
+}
+;;
+
+{ .mfi
+      nop.m         0
+      nop.f         0
+      mov           b0                  = GR_SAVE_B0
+}
+;;
+
+{ .mfi
+      nop.m         0
+      fma.s.s0      cisf_Cos_res        = cisf_Cos_res, f1, f0
+      mov           ar.pfs              = GR_SAVE_PFS
+}
+// exit for |x| > 2^24 path (__libm_sincos and cis)
+{ .mfb
+      nop.m         0
+      fma.s.s0      cisf_Sin_res        = cisf_Sin_res, f1, f0
+(p14) br.cond.sptk  _CISF_RETURN
+};;
+
+{ .mmb
+      stfs          [cisf_pResSin]      = cisf_Sin_res
+      stfs          [cisf_pResCos]      = cisf_Cos_res
+      br.ret.sptk   b0 // exit for sincos |x| > 2^24 path
+};;
+
+.endp _CISF_LARGE_ARGS
+
+.type   __libm_sincos_large#,@function
+.global __libm_sincos_large#