diff options
author | Mike Frysinger <vapier@gentoo.org> | 2014-02-15 22:07:25 -0500 |
---|---|---|
committer | Mike Frysinger <vapier@gentoo.org> | 2014-02-16 01:12:38 -0500 |
commit | c70a4b1db0cf5e813ae24b0fa96a352399eb6edf (patch) | |
tree | 5a36b0f0955682ae5232907d04fdf68589990783 /sysdeps/ia64/fpu/libm_sincosf.S | |
parent | 591aeaf7a99bc9aa9179f013114d92496952dced (diff) | |
download | glibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.tar.gz glibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.tar.xz glibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.zip |
ia64: relocate out of ports/ subdir
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincosf.S')
-rw-r--r-- | sysdeps/ia64/fpu/libm_sincosf.S | 744 |
1 files changed, 744 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincosf.S b/sysdeps/ia64/fpu/libm_sincosf.S new file mode 100644 index 0000000000..26e66fad6e --- /dev/null +++ b/sysdeps/ia64/fpu/libm_sincosf.S @@ -0,0 +1,744 @@ +.file "libm_sincosf.s" + + +// Copyright (c) 2002 - 2005, Intel Corporation +// All rights reserved. +// +// Contributed 2002 by the Intel Numerics Group, Intel Corporation +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote +// products derived from this software without specific prior written +// permission. + +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS +// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Intel Corporation is the author of this code, and requests that all +// problem reports or change requests be submitted to it directly at +// http://www.intel.com/software/products/opensource/libraries/num.htm. +// +// History +//============================================================== +// 02/01/02 Initial version +// 02/18/02 Large arguments processing routine is excluded. +// External interface entry points are added +// 02/26/02 Added temporary return of results in r8, r9 +// 03/13/02 Corrected restore of predicate registers +// 03/19/02 Added stack unwind around call to __libm_cisf_large +// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16) +// 02/10/03 Reordered header: .section, .global, .proc, .align +// 02/11/04 cisf is moved to the separate file. +// 03/31/05 Reformatted delimiters between data tables + +// API +//============================================================== +// 1) void sincosf(float, float*s, float*c) +// 2) __libm_sincosf - internal LIBM function, that accepts +// argument in f8 and returns cosine through f8, sine through f9 + +// +// Overview of operation +//============================================================== +// +// Step 1 +// ====== +// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4 +// divide x by pi/2^k. +// Multiply by 2^k/pi. +// nfloat = Round result to integer (round-to-nearest) +// +// r = x - nfloat * pi/2^k +// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy. +// pi/2^k is stored as two numbers that when added make pi/2^k. +// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k) +// HIGH part is rounded to zero, LOW - to nearest +// +// x = (nfloat * pi/2^k) + r +// r is small enough that we can use a polynomial approximation +// and is referred to as the reduced argument. +// +// Step 3 +// ====== +// Take the unreduced part and remove the multiples of 2pi. +// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits +// +// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1) +// N * 2^(k+1) +// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k +// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k +// nfloat * pi/2^k = N2pi + M * pi/2^k +// +// +// Sin(x) = Sin((nfloat * pi/2^k) + r) +// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r) +// +// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k) +// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k) +// = Sin(Mpi/2^k) +// +// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k) +// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k) +// = Cos(Mpi/2^k) +// +// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) +// +// +// Step 4 +// ====== +// 0 <= M < 2^(k+1) +// There are 2^(k+1) Sin entries in a table. +// There are 2^(k+1) Cos entries in a table. +// +// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup. +// +// +// Step 5 +// ====== +// Calculate Cos(r) and Sin(r) by polynomial approximation. +// +// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos +// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin +// +// and the coefficients q1, q2 and p1, p2 are stored in a table +// +// +// Calculate +// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) +// +// as follows +// +// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k) +// rsq = r*r +// +// +// P = p1 + r^2p2 +// Q = q1 + r^2q2 +// +// rcub = r * rsq +// Sin(r) = r + rcub * P +// = r + r^3p1 + r^5p2 = Sin(r) +// +// P = r + rcub * P +// +// Answer = S[m] Cos(r) + C[m] P +// +// Cos(r) = 1 + rsq Q +// Cos(r) = 1 + r^2 Q +// Cos(r) = 1 + r^2 (q1 + r^2q2) +// Cos(r) = 1 + r^2q1 + r^4q2 +// +// S[m] Cos(r) = S[m](1 + rsq Q) +// S[m] Cos(r) = S[m] + S[m] rsq Q +// S[m] Cos(r) = S[m] + s_rsq Q +// Q = S[m] + s_rsq Q +// +// Then, +// +// Answer = Q + C[m] P + + +// Registers used +//============================================================== +// general input registers: +// r14 -> r19 +// r32 -> r49 + +// predicate registers used: +// p6 -> p14 + +// floating-point registers used +// f9 -> f15 +// f32 -> f100 + +// Assembly macros +//============================================================== + +cisf_Arg = f8 + +cisf_Sin_res = f9 +cisf_Cos_res = f8 + + +cisf_NORM_f8 = f10 +cisf_W = f11 +cisf_int_Nfloat = f12 +cisf_Nfloat = f13 + +cisf_r = f14 +cisf_r_exact = f68 +cisf_rsq = f15 +cisf_rcub = f32 + +cisf_Inv_Pi_by_16 = f33 +cisf_Pi_by_16_hi = f34 +cisf_Pi_by_16_lo = f35 + +cisf_Inv_Pi_by_64 = f36 +cisf_Pi_by_64_hi = f37 +cisf_Pi_by_64_lo = f38 + + +cisf_P1 = f39 +cisf_Q1 = f40 +cisf_P2 = f41 +cisf_Q2 = f42 +cisf_P3 = f43 +cisf_Q3 = f44 +cisf_P4 = f45 +cisf_Q4 = f46 + +cisf_P_temp1 = f47 +cisf_P_temp2 = f48 + +cisf_Q_temp1 = f49 +cisf_Q_temp2 = f50 + +cisf_P = f51 + +cisf_SIG_INV_PI_BY_16_2TO61 = f52 +cisf_RSHF_2TO61 = f53 +cisf_RSHF = f54 +cisf_2TOM61 = f55 +cisf_NFLOAT = f56 +cisf_W_2TO61_RSH = f57 + +cisf_tmp = f58 + +cisf_Sm_sin = f59 +cisf_Cm_sin = f60 + +cisf_Sm_cos = f61 +cisf_Cm_cos = f62 + +cisf_srsq_sin = f63 +cisf_srsq_cos = f64 + +cisf_Q_sin = f65 +cisf_Q_cos = f66 +cisf_Q = f67 + +///////////////////////////////////////////////////////////// + +cisf_pResSin = r33 +cisf_pResCos = r34 + +cisf_exp_limit = r35 +cisf_r_signexp = r36 +cisf_AD_beta_table = r37 +cisf_r_sincos = r38 + +cisf_r_exp = r39 +cisf_r_17_ones = r40 + +cisf_GR_sig_inv_pi_by_16 = r14 +cisf_GR_rshf_2to61 = r15 +cisf_GR_rshf = r16 +cisf_GR_exp_2tom61 = r17 +cisf_GR_n = r18 + +cisf_GR_n_sin = r19 +cisf_GR_m_sin = r41 +cisf_GR_32m_sin = r41 + +cisf_GR_n_cos = r42 +cisf_GR_m_cos = r43 +cisf_GR_32m_cos = r43 + +cisf_AD_2_sin = r44 +cisf_AD_2_cos = r45 + +cisf_gr_tmp = r46 +GR_SAVE_B0 = r47 +GR_SAVE_GP = r48 +rB0_SAVED = r49 +GR_SAVE_PFS = r50 +GR_SAVE_PR = r51 +cisf_AD_1 = r52 + +RODATA + +.align 16 +// Pi/16 parts +LOCAL_OBJECT_START(double_cisf_pi) + data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part + data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part +LOCAL_OBJECT_END(double_cisf_pi) + +// Coefficients for polynomials +LOCAL_OBJECT_START(double_cisf_pq_k4) + data8 0x3F810FABB668E9A2 // P2 + data8 0x3FA552E3D6DE75C9 // Q2 + data8 0xBFC555554447BC7F // P1 + data8 0xBFDFFFFFC447610A // Q1 +LOCAL_OBJECT_END(double_cisf_pq_k4) + +// Sincos table (S[m], C[m]) +LOCAL_OBJECT_START(double_sin_cos_beta_k4) + data8 0x0000000000000000 // sin ( 0 Pi / 16 ) + data8 0x3FF0000000000000 // cos ( 0 Pi / 16 ) +// + data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 ) + data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 ) +// + data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 ) + data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 ) +// + data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 ) + data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 ) +// + data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 ) + data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 ) +// + data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 ) + data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 ) +// + data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 ) + data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 ) +// + data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 ) + data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 ) +// + data8 0x3FF0000000000000 // sin ( 8 Pi / 16 ) + data8 0x0000000000000000 // cos ( 8 Pi / 16 ) +// + data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 ) + data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 ) +// + data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 ) + data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 ) +// + data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 ) + data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 ) +// + data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 ) + data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 ) +// + data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 ) + data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 ) +// + data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 ) + data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 ) +// + data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 ) + data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 ) +// + data8 0x0000000000000000 // sin ( 16 Pi / 16 ) + data8 0xBFF0000000000000 // cos ( 16 Pi / 16 ) +// + data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 ) + data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 ) +// + data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 ) + data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 ) +// + data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 ) + data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 ) +// + data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 ) + data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 ) +// + data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 ) + data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 ) +// + data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 ) + data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 ) +// + data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 ) + data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 ) +// + data8 0xBFF0000000000000 // sin ( 24 Pi / 16 ) + data8 0x0000000000000000 // cos ( 24 Pi / 16 ) +// + data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 ) + data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 ) +// + data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 ) + data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 ) +// + data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 ) + data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 ) +// + data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 ) + data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 ) +// + data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 ) + data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 ) +// + data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 ) + data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 ) +// + data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 ) + data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 ) +// + data8 0x0000000000000000 // sin ( 32 Pi / 16 ) + data8 0x3FF0000000000000 // cos ( 32 Pi / 16 ) +LOCAL_OBJECT_END(double_sin_cos_beta_k4) + +.section .text + +GLOBAL_IEEE754_ENTRY(sincosf) +// cis_GR_sig_inv_pi_by_16 = significand of 16/pi +{ .mlx + alloc GR_SAVE_PFS = ar.pfs, 0, 21, 0, 0 + movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd + +} +// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2) +{ .mlx + addl cisf_AD_1 = @ltoff(double_cisf_pi), gp + movl cisf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2) +};; + +{ .mfi + ld8 cisf_AD_1 = [cisf_AD_1] + fnorm.s1 cisf_NORM_f8 = cisf_Arg + cmp.eq p13, p14 = r0, r0 // p13 set for sincos +} +// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61 +{ .mib + mov cisf_GR_exp_2tom61 = 0xffff-61 + nop.i 0 + br.cond.sptk _CISF_COMMON +};; +GLOBAL_IEEE754_END(sincosf) + +GLOBAL_LIBM_ENTRY(__libm_sincosf) +{ .mlx +// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi + alloc GR_SAVE_PFS = ar.pfs,0,21,0,0 + movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A +} +// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2) +{ .mlx + addl cisf_AD_1 = @ltoff(double_cisf_pi), gp + movl cisf_GR_rshf_2to61 = 0x47b8000000000000 +};; + +// p14 set for __libm_sincos and cis +{ .mfi + ld8 cisf_AD_1 = [cisf_AD_1] + fnorm.s1 cisf_NORM_f8 = cisf_Arg + cmp.eq p14, p13 = r0, r0 +} +// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61 +{ .mib + mov cisf_GR_exp_2tom61 = 0xffff-61 + nop.i 0 + nop.b 0 +};; + +_CISF_COMMON: +// Form two constants we need +// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand +// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand +// fcmp used to set denormal, and invalid on snans +{ .mfi + setf.sig cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16 + fclass.m p6,p0 = cisf_Arg, 0xe7//if x=0,inf,nan + addl cisf_gr_tmp = -1, r0 +} +// cisf_GR_rshf = 1.1000 2^63 for right shift +{ .mlx + setf.d cisf_RSHF_2TO61 = cisf_GR_rshf_2to61 + movl cisf_GR_rshf = 0x43e8000000000000 +};; + +// Form another constant +// 2^-61 for scaling Nfloat +// 0x10017 is register_bias + 24. +// So if f8 >= 2^24, go to large args routine +{ .mmi + getf.exp cisf_r_signexp = cisf_Arg + setf.exp cisf_2TOM61 = cisf_GR_exp_2tom61 + mov cisf_exp_limit = 0x10017 +};; + +// Load the two pieces of pi/16 +// Form another constant +// 1.1000...000 * 2^63, the right shift constant +{ .mmb + ldfe cisf_Pi_by_16_hi = [cisf_AD_1],16 + setf.d cisf_RSHF = cisf_GR_rshf +(p6) br.cond.spnt _CISF_SPECIAL_ARGS +};; + +{ .mmi + ldfe cisf_Pi_by_16_lo = [cisf_AD_1],16 + setf.sig cisf_tmp = cisf_gr_tmp //constant for inexact set + nop.i 0 +};; + +// Start loading P, Q coefficients +{ .mmi + ldfpd cisf_P2,cisf_Q2 = [cisf_AD_1],16 + nop.m 0 + dep.z cisf_r_exp = cisf_r_signexp, 0, 17 +};; + +// p10 is true if we must call routines to handle larger arguments +// p10 is true if f8 exp is >= 0x10017 +{ .mmb + ldfpd cisf_P1,cisf_Q1 = [cisf_AD_1], 16 + cmp.ge p10, p0 = cisf_r_exp, cisf_exp_limit +(p10) br.cond.spnt _CISF_LARGE_ARGS // go to |x| >= 2^24 path +};; + +// cisf_W = x * cisf_Inv_Pi_by_16 +// Multiply x by scaled 16/pi and add large const to shift integer part of W to +// rightmost bits of significand +{ .mfi + nop.m 0 + fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61 + nop.i 0 +};; + +// cisf_NFLOAT = Round_Int_Nearest(cisf_W) +{ .mfi + nop.m 0 + fms.s1 cisf_NFLOAT = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF + nop.i 0 +};; + +// N = (int)cisf_int_Nfloat +{ .mfi + getf.sig cisf_GR_n = cisf_W_2TO61_RSH + nop.f 0 + nop.i 0 +};; + +// Add 2^(k-1) (which is in cisf_r_sincos) to N +// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x +// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo +{ .mfi + add cisf_GR_n_cos = 0x8, cisf_GR_n + fnma.s1 cisf_r = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8 + nop.i 0 +};; + +//Get M (least k+1 bits of N) +{ .mmi + and cisf_GR_m_sin = 0x1f,cisf_GR_n + and cisf_GR_m_cos = 0x1f,cisf_GR_n_cos + nop.i 0 +};; + +{ .mmi + shladd cisf_AD_2_cos = cisf_GR_m_cos,4, cisf_AD_1 + shladd cisf_AD_2_sin = cisf_GR_m_sin,4, cisf_AD_1 + nop.i 0 +};; + +// den. input to set uflow +{ .mmf + ldfpd cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin] + ldfpd cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos] + fclass.m.unc p10,p0 = cisf_Arg,0x0b +};; + +{ .mfi + nop.m 0 + fma.s1 cisf_rsq = cisf_r, cisf_r, f0 // get r^2 + nop.i 0 +} +{ .mfi + nop.m 0 + fmpy.s0 cisf_tmp = cisf_tmp,cisf_tmp // inexact flag + nop.i 0 +};; + +{ .mmf + nop.m 0 + nop.m 0 + fnma.s1 cisf_r_exact = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r +};; + +{ .mfi + nop.m 0 + fma.s1 cisf_P = cisf_rsq, cisf_P2, cisf_P1 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 cisf_Q = cisf_rsq, cisf_Q2, cisf_Q1 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fmpy.s1 cisf_rcub = cisf_r_exact, cisf_rsq // get r^3 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fmpy.s1 cisf_srsq_sin = cisf_Sm_sin,cisf_rsq + nop.i 0 +} +{ .mfi + nop.m 0 + fmpy.s1 cisf_srsq_cos = cisf_Sm_cos,cisf_rsq + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 cisf_P = cisf_rcub,cisf_P,cisf_r_exact + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 cisf_Q_sin = cisf_srsq_sin,cisf_Q, cisf_Sm_sin + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 cisf_Q_cos = cisf_srsq_cos,cisf_Q, cisf_Sm_cos + nop.i 0 +};; + +// If den. arg, force underflow to be set +{ .mfi + nop.m 0 +(p10) fmpy.s.s0 cisf_tmp = cisf_Arg,cisf_Arg + nop.i 0 +};; + +//Final sin +{ .mfi + nop.m 0 + fma.s.s0 cisf_Sin_res = cisf_Cm_sin, cisf_P, cisf_Q_sin + nop.i 0 +} +//Final cos +{ .mfb + nop.m 0 + fma.s.s0 cisf_Cos_res = cisf_Cm_cos, cisf_P, cisf_Q_cos +(p14) br.cond.sptk _CISF_RETURN //com. exit for __libm_sincos and cis main path +};; + +{ .mmb + stfs [cisf_pResSin] = cisf_Sin_res + stfs [cisf_pResCos] = cisf_Cos_res + br.ret.sptk b0 // common exit for sincos main path +};; + +_CISF_SPECIAL_ARGS: +// sinf(+/-0) = +/-0 +// sinf(Inf) = NaN +// sinf(NaN) = NaN +{ .mfi + nop.m 999 + fma.s.s0 cisf_Sin_res = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf) + nop.i 999 +};; + +// cosf(+/-0) = 1.0 +// cosf(Inf) = NaN +// cosf(NaN) = NaN +{ .mfb + nop.m 999 + fma.s.s0 cisf_Cos_res = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf) +(p14) br.cond.sptk _CISF_RETURN //spec exit for __libm_sincos and cis main path +};; + +{ .mmb + stfs [cisf_pResSin] = cisf_Sin_res + stfs [cisf_pResCos] = cisf_Cos_res + br.ret.sptk b0 // special exit for sincos main path +};; + + // exit for sincos + // NOTE! r8 and r9 used only because of compiler issue + // connected with float point complex function arguments pass + // After fix of this issue this operations can be deleted +_CISF_RETURN: +{ .mmb + getf.s r8 = cisf_Cos_res + getf.s r9 = cisf_Sin_res + br.ret.sptk b0 // exit for sincos +};; +GLOBAL_LIBM_END(__libm_sincosf) + +//// |x| > 2^24 path /////// +.proc _CISF_LARGE_ARGS +_CISF_LARGE_ARGS: +.prologue +{ .mfi + nop.m 0 + nop.f 0 +.save ar.pfs, GR_SAVE_PFS + mov GR_SAVE_PFS = ar.pfs +};; + +{ .mfi + mov GR_SAVE_GP = gp + nop.f 0 +.save b0, GR_SAVE_B0 + mov GR_SAVE_B0 = b0 +};; + +.body +// Call of huge arguments sincos +{ .mib + nop.m 0 + mov GR_SAVE_PR = pr + br.call.sptk b0 = __libm_sincos_large +};; + +{ .mfi + mov gp = GR_SAVE_GP + nop.f 0 + mov pr = GR_SAVE_PR, 0x1fffe +} +;; + +{ .mfi + nop.m 0 + nop.f 0 + mov b0 = GR_SAVE_B0 +} +;; + +{ .mfi + nop.m 0 + fma.s.s0 cisf_Cos_res = cisf_Cos_res, f1, f0 + mov ar.pfs = GR_SAVE_PFS +} +// exit for |x| > 2^24 path (__libm_sincos and cis) +{ .mfb + nop.m 0 + fma.s.s0 cisf_Sin_res = cisf_Sin_res, f1, f0 +(p14) br.cond.sptk _CISF_RETURN +};; + +{ .mmb + stfs [cisf_pResSin] = cisf_Sin_res + stfs [cisf_pResCos] = cisf_Cos_res + br.ret.sptk b0 // exit for sincos |x| > 2^24 path +};; + +.endp _CISF_LARGE_ARGS + +.type __libm_sincos_large#,@function +.global __libm_sincos_large# |