summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/libm_sincosf.S
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>2004-12-22 20:10:10 +0000
committerUlrich Drepper <drepper@redhat.com>2004-12-22 20:10:10 +0000
commita334319f6530564d22e775935d9c91663623a1b4 (patch)
treeb5877475619e4c938e98757d518bb1e9cbead751 /sysdeps/ia64/fpu/libm_sincosf.S
parent0ecb606cb6cf65de1d9fc8a919bceb4be476c602 (diff)
downloadglibc-a334319f6530564d22e775935d9c91663623a1b4.tar.gz
glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.xz
glibc-a334319f6530564d22e775935d9c91663623a1b4.zip
(CFLAGS-tst-align.c): Add -mpreferred-stack-boundary=4.
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincosf.S')
-rw-r--r--sysdeps/ia64/fpu/libm_sincosf.S745
1 files changed, 0 insertions, 745 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincosf.S b/sysdeps/ia64/fpu/libm_sincosf.S
deleted file mode 100644
index cf23356ef4..0000000000
--- a/sysdeps/ia64/fpu/libm_sincosf.S
+++ /dev/null
@@ -1,745 +0,0 @@
-.file "libm_sincosf.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/01/02 Initial version
-// 02/18/02 Large arguments processing routine is excluded.
-//          External interface entry points are added
-// 02/26/02 Added temporary return of results in r8, r9
-// 03/13/02 Corrected restore of predicate registers
-// 03/19/02 Added stack unwind around call to __libm_cisf_large
-// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16)
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 02/11/04 cisf is moved to the separate file.
-// 03/31/05 Reformatted delimiters between data tables
-
-// API
-//==============================================================
-// 1) void sincosf(float, float*s, float*c)
-// 2) __libm_sincosf - internal LIBM function, that accepts
-//    argument in f8 and returns cosine through f8, sine through f9
-
-//
-// Overview of operation
-//==============================================================
-//
-// Step 1
-// ======
-// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k  where k=4
-//    divide x by pi/2^k.
-//    Multiply by 2^k/pi.
-//    nfloat = Round result to integer (round-to-nearest)
-//
-// r = x -  nfloat * pi/2^k
-//    Do this as (x -  nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
-//    pi/2^k is stored as two numbers that when added make pi/2^k.
-//       pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-//    HIGH part is rounded to zero, LOW - to nearest
-//
-// x = (nfloat * pi/2^k) + r
-//    r is small enough that we can use a polynomial approximation
-//    and is referred to as the reduced argument.
-//
-// Step 3
-// ======
-// Take the unreduced part and remove the multiples of 2pi.
-// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
-//
-//    nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
-//    N * 2^(k+1)
-//    nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
-//    nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
-//    nfloat * pi/2^k = N2pi + M * pi/2^k
-//
-//
-// Sin(x) = Sin((nfloat * pi/2^k) + r)
-//        = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
-//
-//          Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
-//                               = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
-//                               = Sin(Mpi/2^k)
-//
-//          Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
-//                               = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
-//                               = Cos(Mpi/2^k)
-//
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-//
-// Step 4
-// ======
-// 0 <= M < 2^(k+1)
-// There are 2^(k+1) Sin entries in a table.
-// There are 2^(k+1) Cos entries in a table.
-//
-// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
-//
-//
-// Step 5
-// ======
-// Calculate Cos(r) and Sin(r) by polynomial approximation.
-//
-// Cos(r) = 1 + r^2 q1  + r^4 q2 = Series for Cos
-// Sin(r) = r + r^3 p1  + r^5 p2 = Series for Sin
-//
-// and the coefficients q1, q2 and p1, p2 are stored in a table
-//
-//
-// Calculate
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-// as follows
-//
-//    S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
-//    rsq = r*r
-//
-//
-//    P = p1 + r^2p2
-//    Q = q1 + r^2q2
-//
-//       rcub = r * rsq
-//       Sin(r) = r + rcub * P
-//              = r + r^3p1  + r^5p2 = Sin(r)
-//
-//       P =  r + rcub * P
-//
-//    Answer = S[m] Cos(r) + C[m] P
-//
-//       Cos(r) = 1 + rsq Q
-//       Cos(r) = 1 + r^2 Q
-//       Cos(r) = 1 + r^2 (q1 + r^2q2)
-//       Cos(r) = 1 + r^2q1 + r^4q2
-//
-//       S[m] Cos(r) = S[m](1 + rsq Q)
-//       S[m] Cos(r) = S[m] + S[m] rsq Q
-//       S[m] Cos(r) = S[m] + s_rsq Q
-//       Q           = S[m] + s_rsq Q
-//
-// Then,
-//
-//    Answer = Q + C[m] P
-
-
-// Registers used
-//==============================================================
-// general input registers:
-// r14 -> r19
-// r32 -> r49
-
-// predicate registers used:
-// p6 -> p14
-
-// floating-point registers used
-// f9 -> f15
-// f32 -> f100
-
-// Assembly macros
-//==============================================================
-
-cisf_Arg                     = f8
-
-cisf_Sin_res                 = f9
-cisf_Cos_res                 = f8
-
-
-cisf_NORM_f8                 = f10
-cisf_W                       = f11
-cisf_int_Nfloat              = f12
-cisf_Nfloat                  = f13
-
-cisf_r                       = f14
-cisf_r_exact                 = f68
-cisf_rsq                     = f15
-cisf_rcub                    = f32
-
-cisf_Inv_Pi_by_16            = f33
-cisf_Pi_by_16_hi             = f34
-cisf_Pi_by_16_lo             = f35
-
-cisf_Inv_Pi_by_64            = f36
-cisf_Pi_by_64_hi             = f37
-cisf_Pi_by_64_lo             = f38
-
-
-cisf_P1                      = f39
-cisf_Q1                      = f40
-cisf_P2                      = f41
-cisf_Q2                      = f42
-cisf_P3                      = f43
-cisf_Q3                      = f44
-cisf_P4                      = f45
-cisf_Q4                      = f46
-
-cisf_P_temp1                 = f47
-cisf_P_temp2                 = f48
-
-cisf_Q_temp1                 = f49
-cisf_Q_temp2                 = f50
-
-cisf_P                       = f51
-
-cisf_SIG_INV_PI_BY_16_2TO61  = f52
-cisf_RSHF_2TO61              = f53
-cisf_RSHF                    = f54
-cisf_2TOM61                  = f55
-cisf_NFLOAT                  = f56
-cisf_W_2TO61_RSH             = f57
-
-cisf_tmp                     = f58
-
-cisf_Sm_sin                  = f59
-cisf_Cm_sin                  = f60
-
-cisf_Sm_cos                  = f61
-cisf_Cm_cos                  = f62
-
-cisf_srsq_sin                = f63
-cisf_srsq_cos                = f64
-
-cisf_Q_sin                   = f65
-cisf_Q_cos                   = f66
-cisf_Q                       = f67
-
-/////////////////////////////////////////////////////////////
-
-cisf_pResSin                 = r33
-cisf_pResCos                 = r34
-
-cisf_exp_limit               = r35
-cisf_r_signexp               = r36
-cisf_AD_beta_table           = r37
-cisf_r_sincos                = r38
-
-cisf_r_exp                   = r39
-cisf_r_17_ones               = r40
-
-cisf_GR_sig_inv_pi_by_16     = r14
-cisf_GR_rshf_2to61           = r15
-cisf_GR_rshf                 = r16
-cisf_GR_exp_2tom61           = r17
-cisf_GR_n                    = r18
-
-cisf_GR_n_sin                = r19
-cisf_GR_m_sin                = r41
-cisf_GR_32m_sin              = r41
-
-cisf_GR_n_cos                = r42
-cisf_GR_m_cos                = r43
-cisf_GR_32m_cos              = r43
-
-cisf_AD_2_sin                = r44
-cisf_AD_2_cos                = r45
-
-cisf_gr_tmp                  = r46
-GR_SAVE_B0                   = r47
-GR_SAVE_GP                   = r48
-rB0_SAVED                    = r49
-GR_SAVE_PFS                  = r50
-GR_SAVE_PR                   = r51
-cisf_AD_1                    = r52
-
-RODATA
-
-.align 16
-// Pi/16 parts
-LOCAL_OBJECT_START(double_cisf_pi)
-   data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
-   data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
-LOCAL_OBJECT_END(double_cisf_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_cisf_pq_k4)
-   data8 0x3F810FABB668E9A2 // P2
-   data8 0x3FA552E3D6DE75C9 // Q2
-   data8 0xBFC555554447BC7F // P1
-   data8 0xBFDFFFFFC447610A // Q1
-LOCAL_OBJECT_END(double_cisf_pq_k4)
-
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
-    data8 0x0000000000000000 // sin ( 0 Pi / 16 )
-    data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
-//
-    data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
-    data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
-//
-    data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
-    data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
-//
-    data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
-    data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
-//
-    data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
-    data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
-//
-    data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
-    data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
-//
-    data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
-    data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
-//
-    data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
-    data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
-//
-    data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
-    data8 0x0000000000000000 // cos ( 8 Pi / 16 )
-//
-    data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
-    data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
-//
-    data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
-    data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
-//
-    data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
-    data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
-//
-    data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
-    data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
-//
-    data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
-    data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
-//
-    data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
-    data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
-//
-    data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
-    data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
-//
-    data8 0x0000000000000000 // sin ( 16 Pi / 16 )
-    data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
-//
-    data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
-    data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
-//
-    data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
-    data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
-//
-    data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
-    data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
-//
-    data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
-    data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
-//
-    data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
-    data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
-//
-    data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
-    data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
-//
-    data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
-    data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
-//
-    data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
-    data8 0x0000000000000000 // cos ( 24 Pi / 16 )
-//
-    data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
-    data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
-//
-    data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
-    data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
-//
-    data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
-    data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
-//
-    data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
-    data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
-//
-    data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
-    data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
-//
-    data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
-    data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
-//
-    data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
-    data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
-//
-    data8 0x0000000000000000 // sin ( 32 Pi / 16 )
-    data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
-
-.section .text
-
-GLOBAL_IEEE754_ENTRY(sincosf)
-// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
-{ .mlx
-      alloc         GR_SAVE_PFS              = ar.pfs, 0, 21, 0, 0
-      movl          cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd
-
-}
-// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
-      addl          cisf_AD_1           = @ltoff(double_cisf_pi), gp
-      movl          cisf_GR_rshf_2to61  = 0x47b8000000000000 // 1.1 2^(63+63-2)
-};;
-
-{ .mfi
-      ld8           cisf_AD_1           = [cisf_AD_1]
-      fnorm.s1      cisf_NORM_f8        = cisf_Arg
-      cmp.eq        p13, p14            = r0, r0 // p13 set for sincos
-}
-// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
-      mov           cisf_GR_exp_2tom61  = 0xffff-61
-      nop.i         0
-      br.cond.sptk  _CISF_COMMON
-};;
-GLOBAL_IEEE754_END(sincosf)
-
-GLOBAL_LIBM_ENTRY(__libm_sincosf)
-{ .mlx
-// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi
-      alloc         GR_SAVE_PFS              = ar.pfs,0,21,0,0
-      movl          cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
-}
-// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
-      addl          cisf_AD_1           = @ltoff(double_cisf_pi), gp
-      movl          cisf_GR_rshf_2to61  = 0x47b8000000000000
-};;
-
-// p14 set for __libm_sincos and cis
-{ .mfi
-      ld8           cisf_AD_1           = [cisf_AD_1]
-      fnorm.s1      cisf_NORM_f8        = cisf_Arg
-      cmp.eq        p14, p13            = r0, r0
-}
-// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
-      mov           cisf_GR_exp_2tom61  = 0xffff-61
-      nop.i         0
-      nop.b         0
-};;
-
-_CISF_COMMON:
-//  Form two constants we need
-//  16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
-//  1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
-//  fcmp used to set denormal, and invalid on snans
-{ .mfi
-      setf.sig      cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16
-      fclass.m      p6,p0                       = cisf_Arg, 0xe7//if x=0,inf,nan
-      addl          cisf_gr_tmp                 = -1, r0
-}
-// cisf_GR_rshf = 1.1000 2^63 for right shift
-{ .mlx
-      setf.d        cisf_RSHF_2TO61     = cisf_GR_rshf_2to61
-      movl          cisf_GR_rshf        = 0x43e8000000000000
-};;
-
-//  Form another constant
-//  2^-61 for scaling Nfloat
-//  0x10017 is register_bias + 24.
-//  So if f8 >= 2^24, go to large args routine
-{ .mmi
-      getf.exp      cisf_r_signexp      = cisf_Arg
-      setf.exp      cisf_2TOM61         = cisf_GR_exp_2tom61
-      mov           cisf_exp_limit      = 0x10017
-};;
-
-// Load the two pieces of pi/16
-// Form another constant
-//  1.1000...000 * 2^63, the right shift constant
-{ .mmb
-      ldfe          cisf_Pi_by_16_hi    = [cisf_AD_1],16
-      setf.d        cisf_RSHF           = cisf_GR_rshf
-(p6)  br.cond.spnt  _CISF_SPECIAL_ARGS
-};;
-
-{ .mmi
-      ldfe          cisf_Pi_by_16_lo    = [cisf_AD_1],16
-      setf.sig      cisf_tmp            = cisf_gr_tmp //constant for inexact set
-      nop.i         0
-};;
-
-// Start loading P, Q coefficients
-{ .mmi
-      ldfpd         cisf_P2,cisf_Q2     = [cisf_AD_1],16
-      nop.m         0
-      dep.z         cisf_r_exp          = cisf_r_signexp, 0, 17
-};;
-
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is >= 0x10017
-{ .mmb
-      ldfpd         cisf_P1,cisf_Q1     = [cisf_AD_1], 16
-      cmp.ge        p10, p0             = cisf_r_exp, cisf_exp_limit
-(p10) br.cond.spnt  _CISF_LARGE_ARGS    // go to |x| >= 2^24 path
-};;
-
-// cisf_W          = x * cisf_Inv_Pi_by_16
-// Multiply x by scaled 16/pi and add large const to shift integer part of W to
-//   rightmost bits of significand
-{ .mfi
-      nop.m  0
-      fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61
-      nop.i  0
-};;
-
-// cisf_NFLOAT = Round_Int_Nearest(cisf_W)
-{ .mfi
-      nop.m         0
-      fms.s1        cisf_NFLOAT         = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF
-      nop.i         0
-};;
-
-// N = (int)cisf_int_Nfloat
-{ .mfi
-      getf.sig      cisf_GR_n           = cisf_W_2TO61_RSH
-      nop.f         0
-      nop.i         0
-};;
-
-// Add 2^(k-1) (which is in cisf_r_sincos) to N
-// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x
-// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo
-{ .mfi
-      add     cisf_GR_n_cos = 0x8, cisf_GR_n
-      fnma.s1 cisf_r        = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8
-      nop.i   0
-};;
-
-//Get M (least k+1 bits of N)
-{ .mmi
-      and           cisf_GR_m_sin       = 0x1f,cisf_GR_n
-      and           cisf_GR_m_cos       = 0x1f,cisf_GR_n_cos
-      nop.i         0
-};;
-
-{ .mmi
-      shladd        cisf_AD_2_cos       = cisf_GR_m_cos,4, cisf_AD_1
-      shladd        cisf_AD_2_sin       = cisf_GR_m_sin,4, cisf_AD_1
-      nop.i         0
-};;
-
-// den. input to set uflow
-{ .mmf
-      ldfpd         cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin]
-      ldfpd         cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos]
-      fclass.m.unc  p10,p0                   = cisf_Arg,0x0b
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_rsq            = cisf_r, cisf_r,   f0  // get r^2
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fmpy.s0       cisf_tmp            = cisf_tmp,cisf_tmp // inexact flag
-      nop.i         0
-};;
-
-{ .mmf
-      nop.m         0
-      nop.m         0
-      fnma.s1       cisf_r_exact        = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_P              = cisf_rsq, cisf_P2, cisf_P1
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_Q              = cisf_rsq, cisf_Q2, cisf_Q1
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fmpy.s1       cisf_rcub           = cisf_r_exact, cisf_rsq // get r^3
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fmpy.s1       cisf_srsq_sin       = cisf_Sm_sin,cisf_rsq
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fmpy.s1       cisf_srsq_cos       = cisf_Sm_cos,cisf_rsq
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_P              = cisf_rcub,cisf_P,cisf_r_exact
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_Q_sin          = cisf_srsq_sin,cisf_Q, cisf_Sm_sin
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fma.s1        cisf_Q_cos          = cisf_srsq_cos,cisf_Q, cisf_Sm_cos
-      nop.i         0
-};;
-
-// If den. arg, force underflow to be set
-{ .mfi
-      nop.m         0
-(p10) fmpy.s.s0     cisf_tmp            = cisf_Arg,cisf_Arg
-      nop.i         0
-};;
-
-//Final sin
-{ .mfi
-      nop.m         0
-      fma.s.s0      cisf_Sin_res        = cisf_Cm_sin, cisf_P, cisf_Q_sin
-      nop.i         0
-}
-//Final cos
-{ .mfb
-      nop.m         0
-      fma.s.s0      cisf_Cos_res    = cisf_Cm_cos, cisf_P, cisf_Q_cos
-(p14) br.cond.sptk  _CISF_RETURN //com. exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
-      stfs          [cisf_pResSin]      = cisf_Sin_res
-      stfs          [cisf_pResCos]      = cisf_Cos_res
-      br.ret.sptk   b0 // common exit for sincos main path
-};;
-
-_CISF_SPECIAL_ARGS:
-// sinf(+/-0) = +/-0
-// sinf(Inf)  = NaN
-// sinf(NaN)  = NaN
-{ .mfi
-      nop.m         999
-      fma.s.s0      cisf_Sin_res        = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
-      nop.i         999
-};;
-
-// cosf(+/-0) = 1.0
-// cosf(Inf)  = NaN
-// cosf(NaN)  = NaN
-{ .mfb
-      nop.m         999
-      fma.s.s0      cisf_Cos_res        = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
-(p14) br.cond.sptk  _CISF_RETURN //spec exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
-      stfs          [cisf_pResSin]      = cisf_Sin_res
-      stfs          [cisf_pResCos]      = cisf_Cos_res
-      br.ret.sptk   b0 // special exit for sincos main path
-};;
-
- // exit for sincos
- // NOTE! r8 and r9 used only because of compiler issue
- // connected with float point complex function arguments pass
- // After fix of this issue this operations can be deleted
-_CISF_RETURN:
-{ .mmb
-      getf.s        r8                  = cisf_Cos_res
-      getf.s        r9                  = cisf_Sin_res
-      br.ret.sptk   b0 // exit for sincos
-};;
-GLOBAL_LIBM_END(__libm_sincosf)
-
-////  |x| > 2^24 path  ///////
-.proc _CISF_LARGE_ARGS
-_CISF_LARGE_ARGS:
-.prologue
-{ .mfi
-      nop.m         0
-      nop.f         0
-.save ar.pfs, GR_SAVE_PFS
-      mov           GR_SAVE_PFS         = ar.pfs
-};;
-
-{ .mfi
-      mov           GR_SAVE_GP          = gp
-      nop.f         0
-.save b0, GR_SAVE_B0
-      mov           GR_SAVE_B0          = b0
-};;
-
-.body
-// Call of huge arguments sincos
-{ .mib
-      nop.m         0
-      mov           GR_SAVE_PR          = pr
-      br.call.sptk  b0                  = __libm_sincos_large
-};;
-
-{ .mfi
-      mov           gp                  = GR_SAVE_GP
-      nop.f         0
-      mov           pr                  = GR_SAVE_PR, 0x1fffe
-}
-;;
-
-{ .mfi
-      nop.m         0
-      nop.f         0
-      mov           b0                  = GR_SAVE_B0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.s.s0      cisf_Cos_res        = cisf_Cos_res, f1, f0
-      mov           ar.pfs              = GR_SAVE_PFS
-}
-// exit for |x| > 2^24 path (__libm_sincos and cis)
-{ .mfb
-      nop.m         0
-      fma.s.s0      cisf_Sin_res        = cisf_Sin_res, f1, f0
-(p14) br.cond.sptk  _CISF_RETURN
-};;
-
-{ .mmb
-      stfs          [cisf_pResSin]      = cisf_Sin_res
-      stfs          [cisf_pResCos]      = cisf_Cos_res
-      br.ret.sptk   b0 // exit for sincos |x| > 2^24 path
-};;
-
-.endp _CISF_LARGE_ARGS
-
-.type   __libm_sincos_large#,@function
-.global __libm_sincos_large#
-