diff options
author | Ulrich Drepper <drepper@gmail.com> | 2012-01-07 11:19:05 -0500 |
---|---|---|
committer | Ulrich Drepper <drepper@gmail.com> | 2012-01-07 11:19:05 -0500 |
commit | d75a0a62b12c35ee85f786d5f8d155ab39909411 (patch) | |
tree | c3479d23878ef4ab05629d4a60f4f7623269c1dd /sysdeps/ia64/fpu/libm_sincos.S | |
parent | dcc9756b5bfbb2b97f73bad863d7e1c4002bea98 (diff) | |
download | glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.gz glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.xz glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.zip |
Remove IA-64 support
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincos.S')
-rw-r--r-- | sysdeps/ia64/fpu/libm_sincos.S | 783 |
1 files changed, 0 insertions, 783 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincos.S b/sysdeps/ia64/fpu/libm_sincos.S deleted file mode 100644 index 7fda2afac4..0000000000 --- a/sysdeps/ia64/fpu/libm_sincos.S +++ /dev/null @@ -1,783 +0,0 @@ -.file "libm_sincos.s" - - -// Copyright (c) 2002 - 2005, Intel Corporation -// All rights reserved. -// -// Contributed 2002 by the Intel Numerics Group, Intel Corporation -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// -// * Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// -// * The name of Intel Corporation may not be used to endorse or promote -// products derived from this software without specific prior written -// permission. - -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS -// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY -// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING -// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -// Intel Corporation is the author of this code, and requests that all -// problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. -// -// History -//============================================================== -// 02/01/02 Initial version -// 02/18/02 Large arguments processing routine is excluded. -// External interface entry points are added -// 03/13/02 Corrected restore of predicate registers -// 03/19/02 Added stack unwind around call to __libm_cis_large -// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16) -// 02/10/03 Reordered header: .section, .global, .proc, .align -// 08/08/03 Improved performance -// 02/11/04 cis is moved to the separate file. -// 03/31/05 Reformatted delimiters between data tables -// -// API -//============================================================== -// 1) void sincos(double, double*s, double*c) -// 2) __libm_sincos - internal LIBM function, that accepts -// argument in f8 and returns cosine through f8, sine through f9 -// -// Overview of operation -//============================================================== -// -// Step 1 -// ====== -// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4 -// divide x by pi/2^k. -// Multiply by 2^k/pi. -// nfloat = Round result to integer (round-to-nearest) -// -// r = x - nfloat * pi/2^k -// Do this as ((((x - nfloat * HIGH(pi/2^k))) - -// nfloat * LOW(pi/2^k)) - -// nfloat * LOWEST(pi/2^k) for increased accuracy. -// pi/2^k is stored as two numbers that when added make pi/2^k. -// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k) -// HIGH and LOW parts are rounded to zero values, -// and LOWEST is rounded to nearest one. -// -// x = (nfloat * pi/2^k) + r -// r is small enough that we can use a polynomial approximation -// and is referred to as the reduced argument. -// -// Step 3 -// ====== -// Take the unreduced part and remove the multiples of 2pi. -// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits -// -// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1) -// N * 2^(k+1) -// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k -// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k -// nfloat * pi/2^k = N2pi + M * pi/2^k -// -// -// Sin(x) = Sin((nfloat * pi/2^k) + r) -// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r) -// -// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k) -// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k) -// = Sin(Mpi/2^k) -// -// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k) -// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k) -// = Cos(Mpi/2^k) -// -// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) -// -// -// Step 4 -// ====== -// 0 <= M < 2^(k+1) -// There are 2^(k+1) Sin entries in a table. -// There are 2^(k+1) Cos entries in a table. -// -// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup. -// -// -// Step 5 -// ====== -// Calculate Cos(r) and Sin(r) by polynomial approximation. -// -// Cos(r) = 1 + r^2 q1 + r^4 q2 + r^6 q3 + ... = Series for Cos -// Sin(r) = r + r^3 p1 + r^5 p2 + r^7 p3 + ... = Series for Sin -// -// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table -// -// -// Calculate -// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) -// -// as follows -// -// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k) -// rsq = r*r -// -// -// P = p1 + r^2p2 + r^4p3 + r^6p4 -// Q = q1 + r^2q2 + r^4q3 + r^6q4 -// -// rcub = r * rsq -// Sin(r) = r + rcub * P -// = r + r^3p1 + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r) -// -// The coefficients are not exactly these values, but almost. -// -// p1 = -1/6 = -1/3! -// p2 = 1/120 = 1/5! -// p3 = -1/5040 = -1/7! -// p4 = 1/362889 = 1/9! -// -// P = r + rcub * P -// -// Answer = S[m] Cos(r) + C[m] P -// -// Cos(r) = 1 + rsq Q -// Cos(r) = 1 + r^2 Q -// Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4) -// Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ... -// -// S[m] Cos(r) = S[m](1 + rsq Q) -// S[m] Cos(r) = S[m] + S[m] rsq Q -// S[m] Cos(r) = S[m] + s_rsq Q -// Q = S[m] + s_rsq Q -// -// Then, -// -// Answer = Q + C[m] P - -// Registers used -//============================================================== -// general input registers: -// r14 -> r39 - -// predicate registers used: -// p6 -> p14 -// -// floating-point registers used -// f9 -> f15 -// f32 -> f67 - -// Assembly macros -//============================================================== - -cis_Arg = f8 - -cis_Sin_res = f9 -cis_Cos_res = f8 - -cis_NORM_f8 = f10 -cis_W = f11 -cis_int_Nfloat = f12 -cis_Nfloat = f13 - -cis_r = f14 -cis_rsq = f15 -cis_rcub = f32 - -cis_Inv_Pi_by_16 = f33 -cis_Pi_by_16_hi = f34 -cis_Pi_by_16_lo = f35 - -cis_Inv_Pi_by_64 = f36 -cis_Pi_by_16_lowest = f37 -cis_r_exact = f38 - - -cis_P1 = f39 -cis_Q1 = f40 -cis_P2 = f41 -cis_Q2 = f42 -cis_P3 = f43 -cis_Q3 = f44 -cis_P4 = f45 -cis_Q4 = f46 - -cis_P_temp1 = f47 -cis_P_temp2 = f48 - -cis_Q_temp1 = f49 -cis_Q_temp2 = f50 - -cis_P = f51 - -cis_SIG_INV_PI_BY_16_2TO61 = f52 -cis_RSHF_2TO61 = f53 -cis_RSHF = f54 -cis_2TOM61 = f55 -cis_NFLOAT = f56 -cis_W_2TO61_RSH = f57 - -cis_tmp = f58 - -cis_Sm_sin = f59 -cis_Cm_sin = f60 - -cis_Sm_cos = f61 -cis_Cm_cos = f62 - -cis_srsq_sin = f63 -cis_srsq_cos = f64 - -cis_Q_sin = f65 -cis_Q_cos = f66 -cis_Q = f67 - -///////////////////////////////////////////////////////////// - -cis_pResSin = r33 -cis_pResCos = r34 - -cis_GR_sig_inv_pi_by_16 = r14 -cis_GR_rshf_2to61 = r15 -cis_GR_rshf = r16 -cis_GR_exp_2tom61 = r17 -cis_GR_n = r18 -cis_GR_n_sin = r19 -cis_exp_limit = r20 -cis_r_signexp = r21 -cis_AD_1 = r22 -cis_r_sincos = r23 -cis_r_exp = r24 -cis_r_17_ones = r25 -cis_GR_m_sin = r26 -cis_GR_32m_sin = r26 -cis_GR_n_cos = r27 -cis_GR_m_cos = r28 -cis_GR_32m_cos = r28 -cis_AD_2_sin = r29 -cis_AD_2_cos = r30 -cis_gr_tmp = r31 - -GR_SAVE_B0 = r35 -GR_SAVE_GP = r36 -rB0_SAVED = r37 -GR_SAVE_PFS = r38 -GR_SAVE_PR = r39 - -RODATA - -.align 16 -// Pi/16 parts -LOCAL_OBJECT_START(double_cis_pi) - data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part - data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part - data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part -LOCAL_OBJECT_END(double_cis_pi) - -// Coefficients for polynomials -LOCAL_OBJECT_START(double_cis_pq_k4) - data8 0x3EC71C963717C63A // P4 - data8 0x3EF9FFBA8F191AE6 // Q4 - data8 0xBF2A01A00F4E11A8 // P3 - data8 0xBF56C16C05AC77BF // Q3 - data8 0x3F8111111110F167 // P2 - data8 0x3FA555555554DD45 // Q2 - data8 0xBFC5555555555555 // P1 - data8 0xBFDFFFFFFFFFFFFC // Q1 -LOCAL_OBJECT_END(double_cis_pq_k4) - -// Sincos table (S[m], C[m]) -LOCAL_OBJECT_START(double_sin_cos_beta_k4) -data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16) S0 -data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16) C0 -// -data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16) S1 -data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16) C1 -// -data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16) S2 -data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16) C2 -// -data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16) S3 -data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16) C3 -// -data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16) S4 -data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16) C4 -// -data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16) C3 -data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16) S3 -// -data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16) C2 -data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16) S2 -// -data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16) C1 -data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16) S1 -// -data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16) C0 -data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16) S0 -// -data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16) C1 -data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16) -S1 -// -data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16) C2 -data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16) -S2 -// -data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16) C3 -data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16) -S3 -// -data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16) S4 -data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16) -S4 -// -data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3 -data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3 -// -data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2 -data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2 -// -data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1 -data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1 -// -data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0 -data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0 -// -data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1 -data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1 -// -data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2 -data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2 -// -data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3 -data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3 -// -data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4 -data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4 -// -data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3 -data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3 -// -data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2 -data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2 -// -data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1 -data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1 -// -data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0 -data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0 -// -data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1 -data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1 -// -data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2 -data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2 -// -data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3 -data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3 -// -data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4 -data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4 -// -data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3 -data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3 -// -data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2 -data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2 -// -data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1 -data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1 -// -data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0 -data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0 -LOCAL_OBJECT_END(double_sin_cos_beta_k4) - -.section .text - -GLOBAL_IEEE754_ENTRY(sincos) -// cis_GR_sig_inv_pi_by_16 = significand of 16/pi -{ .mlx - getf.exp cis_r_signexp = cis_Arg - movl cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A - -} -// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2) -{ .mlx - addl cis_AD_1 = @ltoff(double_cis_pi), gp - movl cis_GR_rshf_2to61 = 0x47b8000000000000 -};; - -{ .mfi - ld8 cis_AD_1 = [cis_AD_1] - fnorm.s1 cis_NORM_f8 = cis_Arg - cmp.eq p13, p14 = r0, r0 // p13 set for sincos -} -// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61 -{ .mib - mov cis_GR_exp_2tom61 = 0xffff-61 - nop.i 0 - br.cond.sptk _CIS_COMMON -};; -GLOBAL_IEEE754_END(sincos) - -GLOBAL_LIBM_ENTRY(__libm_sincos) -// cis_GR_sig_inv_pi_by_16 = significand of 16/pi -{ .mlx - getf.exp cis_r_signexp = cis_Arg - movl cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A -} -// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2) -{ .mlx - addl cis_AD_1 = @ltoff(double_cis_pi), gp - movl cis_GR_rshf_2to61 = 0x47b8000000000000 -};; - -// p14 set for __libm_sincos and cis -{ .mfi - ld8 cis_AD_1 = [cis_AD_1] - fnorm.s1 cis_NORM_f8 = cis_Arg - cmp.eq p14, p13 = r0, r0 -} -// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61 -{ .mib - mov cis_GR_exp_2tom61 = 0xffff-61 - nop.i 0 - nop.b 0 -};; - -_CIS_COMMON: -// Form two constants we need -// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand -// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand -// fcmp used to set denormal, and invalid on snans -{ .mfi - setf.sig cis_SIG_INV_PI_BY_16_2TO61 = cis_GR_sig_inv_pi_by_16 - fclass.m p6,p0 = cis_Arg, 0xe7 // if x=0,inf,nan - addl cis_gr_tmp = -1, r0 -} -// 1.1000 2^63 for right shift -{ .mlx - setf.d cis_RSHF_2TO61 = cis_GR_rshf_2to61 - movl cis_GR_rshf = 0x43e8000000000000 -};; - -// Form another constant -// 2^-61 for scaling Nfloat -// 0x1001a is register_bias + 27. -// So if f8 >= 2^27, go to large arguments routine -{ .mfi - alloc GR_SAVE_PFS = ar.pfs, 3, 5, 0, 0 - fclass.m p11,p0 = cis_Arg, 0x0b // Test for x=unorm - mov cis_exp_limit = 0x1001a -} -{ .mib - setf.exp cis_2TOM61 = cis_GR_exp_2tom61 - nop.i 0 -(p6) br.cond.spnt _CIS_SPECIAL_ARGS -};; - -// Load the two pieces of pi/16 -// Form another constant -// 1.1000...000 * 2^63, the right shift constant -{ .mmb - ldfe cis_Pi_by_16_hi = [cis_AD_1],16 - setf.d cis_RSHF = cis_GR_rshf -(p11) br.cond.spnt _CIS_UNORM // Branch if x=unorm -};; - -_CIS_COMMON2: -// Return here if x=unorm -// Create constant inexact set -{ .mmi - ldfe cis_Pi_by_16_lo = [cis_AD_1],16 - setf.sig cis_tmp = cis_gr_tmp - nop.i 0 -};; - -// Select exponent (17 lsb) -{ .mfi - ldfe cis_Pi_by_16_lowest = [cis_AD_1],16 - nop.f 0 - dep.z cis_r_exp = cis_r_signexp, 0, 17 -};; - -// Start loading P, Q coefficients -// p10 is true if we must call routines to handle larger arguments -// p10 is true if f8 exp is > 0x1001a -{ .mmb - ldfpd cis_P4,cis_Q4 = [cis_AD_1],16 - cmp.ge p10, p0 = cis_r_exp, cis_exp_limit -(p10) br.cond.spnt _CIS_LARGE_ARGS // go to |x| >= 2^27 path -};; - -// cis_W = x * cis_Inv_Pi_by_16 -// Multiply x by scaled 16/pi and add large const to shift integer part of W to -// rightmost bits of significand -{ .mfi - ldfpd cis_P3,cis_Q3 = [cis_AD_1],16 - fma.s1 cis_W_2TO61_RSH = cis_NORM_f8,cis_SIG_INV_PI_BY_16_2TO61,cis_RSHF_2TO61 - nop.i 0 -};; - -// get N = (int)cis_int_Nfloat -// cis_NFLOAT = Round_Int_Nearest(cis_W) -{ .mmf - getf.sig cis_GR_n = cis_W_2TO61_RSH - ldfpd cis_P2,cis_Q2 = [cis_AD_1],16 - fms.s1 cis_NFLOAT = cis_W_2TO61_RSH,cis_2TOM61,cis_RSHF -};; - -// cis_r = -cis_Nfloat * cis_Pi_by_16_hi + x -{ .mfi - ldfpd cis_P1,cis_Q1 = [cis_AD_1], 16 - fnma.s1 cis_r = cis_NFLOAT,cis_Pi_by_16_hi,cis_NORM_f8 - nop.i 0 -};; - -// Add 2^(k-1) (which is in cis_r_sincos) to N -{ .mmi - add cis_GR_n_cos = 0x8, cis_GR_n -;; -//Get M (least k+1 bits of N) - and cis_GR_m_sin = 0x1f,cis_GR_n - and cis_GR_m_cos = 0x1f,cis_GR_n_cos -};; - -{ .mmi - nop.m 0 - nop.m 0 - shl cis_GR_32m_sin = cis_GR_m_sin,5 -};; - -// Add 32*M to address of sin_cos_beta table -// cis_r = cis_r -cis_Nfloat * cis_Pi_by_16_lo -{ .mfi - add cis_AD_2_sin = cis_GR_32m_sin, cis_AD_1 - fnma.s1 cis_r = cis_NFLOAT, cis_Pi_by_16_lo, cis_r - shl cis_GR_32m_cos = cis_GR_m_cos,5 -};; - -// Add 32*M to address of sin_cos_beta table -{ .mmf - ldfe cis_Sm_sin = [cis_AD_2_sin],16 - add cis_AD_2_cos = cis_GR_32m_cos, cis_AD_1 - fclass.m.unc p10,p0 = cis_Arg,0x0b // den. input - uflow -};; - -{ .mfi - ldfe cis_Sm_cos = [cis_AD_2_cos], 16 - nop.i 0 -};; - -{ .mfi - ldfe cis_Cm_sin = [cis_AD_2_sin] - fma.s1 cis_rsq = cis_r, cis_r, f0 // get r^2 - nop.i 0 -} -// fmpy forces inexact flag -{ .mfi - nop.m 0 - fmpy.s0 cis_tmp = cis_tmp,cis_tmp - nop.i 0 -};; - -{ .mfi - nop.m 0 - fnma.s1 cis_r_exact = cis_NFLOAT, cis_Pi_by_16_lowest, cis_r - nop.i 0 -};; - -{ .mfi - ldfe cis_Cm_cos = [cis_AD_2_cos] - fma.s1 cis_P_temp1 = cis_rsq, cis_P4, cis_P3 - nop.i 0 -} - -{ .mfi - nop.m 0 - fma.s1 cis_Q_temp1 = cis_rsq, cis_Q4, cis_Q3 - nop.i 0 -};; - -{ .mfi - nop.m 0 - fmpy.s1 cis_srsq_sin = cis_Sm_sin, cis_rsq - nop.i 0 -} -{ .mfi - nop.m 0 - fmpy.s1 cis_srsq_cos = cis_Sm_cos,cis_rsq - nop.i 0 -};; - -{ .mfi - nop.m 0 - fma.s1 cis_Q_temp2 = cis_rsq, cis_Q_temp1, cis_Q2 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 cis_P_temp2 = cis_rsq, cis_P_temp1, cis_P2 - nop.i 0 -};; - -{ .mfi - nop.m 0 - fmpy.s1 cis_rcub = cis_r_exact, cis_rsq // get r^3 - nop.i 0 -};; - -{ .mfi - nop.m 0 - fma.s1 cis_Q = cis_rsq, cis_Q_temp2, cis_Q1 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 cis_P = cis_rsq, cis_P_temp2, cis_P1 - nop.i 0 -};; - -{ .mfi - nop.m 0 - fma.s1 cis_Q_sin = cis_srsq_sin,cis_Q, cis_Sm_sin - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 cis_Q_cos = cis_srsq_cos,cis_Q, cis_Sm_cos - nop.i 0 -};; - -{ .mfi - nop.m 0 - fma.s1 cis_P = cis_rcub,cis_P, cis_r_exact // final P - nop.i 0 -};; - -// If den. arg, force underflow to be set -{ .mfi - nop.m 0 -(p10) fmpy.d.s0 cis_tmp = cis_Arg,cis_Arg - nop.i 0 -};; - -{ .mfi - nop.m 0 - fma.d.s0 cis_Sin_res = cis_Cm_sin,cis_P,cis_Q_sin//Final sin - nop.i 0 -} -{ .mfb - nop.m 0 - fma.d.s0 cis_Cos_res = cis_Cm_cos,cis_P,cis_Q_cos//Final cos -(p14) br.ret.sptk b0 // common exit for __libm_sincos and cis main path -};; - -{ .mmb - stfd [cis_pResSin] = cis_Sin_res - stfd [cis_pResCos] = cis_Cos_res - br.ret.sptk b0 // common exit for sincos main path -};; - -_CIS_SPECIAL_ARGS: -// sin(+/-0) = +/-0 -// sin(Inf) = NaN -// sin(NaN) = NaN -{ .mfi - nop.m 999 - fma.d.s0 cis_Sin_res = cis_Arg, f0, f0 // sinf(+/-0,NaN,Inf) - nop.i 999 -};; -// cos(+/-0) = 1.0 -// cos(Inf) = NaN -// cos(NaN) = NaN -{ .mfb - nop.m 999 - fma.d.s0 cis_Cos_res = cis_Arg, f0, f1 // cosf(+/-0,NaN,Inf) -(p14) br.ret.sptk b0 //spec exit for __libm_sincos and cis main path -};; - -{ .mmb - stfd [cis_pResSin] = cis_Sin_res - stfd [cis_pResCos] = cis_Cos_res - br.ret.sptk b0 // common exit for sincos main path -};; - -_CIS_UNORM: -// Here if x=unorm -{ .mfb - getf.exp cis_r_signexp = cis_NORM_f8 // Get signexp of x - fcmp.eq.s0 p11,p0 = cis_Arg, f0 // Dummy op to set denorm - br.cond.sptk _CIS_COMMON2 // Return to main path -};; - -GLOBAL_LIBM_END(__libm_sincos) - -//// |x| > 2^27 path /////// -.proc _CIS_LARGE_ARGS -_CIS_LARGE_ARGS: -.prologue -{ .mfi - nop.m 0 - nop.f 0 -.save ar.pfs, GR_SAVE_PFS - mov GR_SAVE_PFS = ar.pfs -} -;; - -{ .mfi - mov GR_SAVE_GP = gp - nop.f 0 -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0 = b0 -};; - -.body -// Call of huge arguments sincos -{ .mib - nop.m 0 - mov GR_SAVE_PR = pr - br.call.sptk b0 = __libm_sincos_large -};; - -{ .mfi - mov gp = GR_SAVE_GP - nop.f 0 - mov pr = GR_SAVE_PR, 0x1fffe -} -;; - -{ .mfi - nop.m 0 - nop.f 0 - mov b0 = GR_SAVE_B0 -} -;; - -{ .mfi - nop.m 0 - fma.d.s0 cis_Cos_res = cis_Cos_res, f1, f0 - mov ar.pfs = GR_SAVE_PFS -} -{ .mfb - nop.m 0 - fma.d.s0 cis_Sin_res = cis_Sin_res, f1, f0 -(p14) br.ret.sptk b0 // exit for |x| > 2^27 path (__libm_sincos and cis) -};; - -{ .mmb - stfd [cis_pResSin] = cis_Sin_res - stfd [cis_pResCos] = cis_Cos_res - br.ret.sptk b0 // exit for sincos |x| > 2^27 path -};; -.endp _CIS_LARGE_ARGS - -.type __libm_sincos_large#,@function -.global __libm_sincos_large# - |