about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/libm_sincos.S
diff options
context:
space:
mode:
authorMike Frysinger <vapier@gentoo.org>2014-02-15 22:07:25 -0500
committerMike Frysinger <vapier@gentoo.org>2014-02-16 01:12:38 -0500
commitc70a4b1db0cf5e813ae24b0fa96a352399eb6edf (patch)
tree5a36b0f0955682ae5232907d04fdf68589990783 /sysdeps/ia64/fpu/libm_sincos.S
parent591aeaf7a99bc9aa9179f013114d92496952dced (diff)
downloadglibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.tar.gz
glibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.tar.xz
glibc-c70a4b1db0cf5e813ae24b0fa96a352399eb6edf.zip
ia64: relocate out of ports/ subdir
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincos.S')
-rw-r--r--sysdeps/ia64/fpu/libm_sincos.S782
1 files changed, 782 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincos.S b/sysdeps/ia64/fpu/libm_sincos.S
new file mode 100644
index 0000000000..c2a9f7262e
--- /dev/null
+++ b/sysdeps/ia64/fpu/libm_sincos.S
@@ -0,0 +1,782 @@
+.file "libm_sincos.s"
+
+
+// Copyright (c) 2002 - 2005, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2002 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+// History
+//==============================================================
+// 02/01/02 Initial version
+// 02/18/02 Large arguments processing routine is excluded.
+//          External interface entry points are added
+// 03/13/02 Corrected restore of predicate registers
+// 03/19/02 Added stack unwind around call to __libm_cis_large
+// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
+// 02/10/03 Reordered header: .section, .global, .proc, .align
+// 08/08/03 Improved performance
+// 02/11/04 cis is moved to the separate file.
+// 03/31/05 Reformatted delimiters between data tables
+//
+// API
+//==============================================================
+// 1) void sincos(double, double*s, double*c)
+// 2) __libm_sincos - internal LIBM function, that accepts
+//    argument in f8 and returns cosine through f8, sine through f9
+//
+// Overview of operation
+//==============================================================
+//
+// Step 1
+// ======
+// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k  where k=4
+//    divide x by pi/2^k.
+//    Multiply by 2^k/pi.
+//    nfloat = Round result to integer (round-to-nearest)
+//
+// r = x -  nfloat * pi/2^k
+//    Do this as ((((x -  nfloat * HIGH(pi/2^k))) -
+//                        nfloat * LOW(pi/2^k)) -
+//                        nfloat * LOWEST(pi/2^k) for increased accuracy.
+//    pi/2^k is stored as two numbers that when added make pi/2^k.
+//       pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
+//    HIGH and LOW parts are rounded to zero values,
+//    and LOWEST is rounded to nearest one.
+//
+// x = (nfloat * pi/2^k) + r
+//    r is small enough that we can use a polynomial approximation
+//    and is referred to as the reduced argument.
+//
+// Step 3
+// ======
+// Take the unreduced part and remove the multiples of 2pi.
+// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
+//
+//    nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
+//    N * 2^(k+1)
+//    nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
+//    nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
+//    nfloat * pi/2^k = N2pi + M * pi/2^k
+//
+//
+// Sin(x) = Sin((nfloat * pi/2^k) + r)
+//        = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
+//
+//          Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
+//                               = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
+//                               = Sin(Mpi/2^k)
+//
+//          Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
+//                               = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
+//                               = Cos(Mpi/2^k)
+//
+// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
+//
+//
+// Step 4
+// ======
+// 0 <= M < 2^(k+1)
+// There are 2^(k+1) Sin entries in a table.
+// There are 2^(k+1) Cos entries in a table.
+//
+// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
+//
+//
+// Step 5
+// ======
+// Calculate Cos(r) and Sin(r) by polynomial approximation.
+//
+// Cos(r) = 1 + r^2 q1  + r^4 q2 + r^6 q3 + ... = Series for Cos
+// Sin(r) = r + r^3 p1  + r^5 p2 + r^7 p3 + ... = Series for Sin
+//
+// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table
+//
+//
+// Calculate
+// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
+//
+// as follows
+//
+//    S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
+//    rsq = r*r
+//
+//
+//    P = p1 + r^2p2 + r^4p3 + r^6p4
+//    Q = q1 + r^2q2 + r^4q3 + r^6q4
+//
+//       rcub = r * rsq
+//       Sin(r) = r + rcub * P
+//              = r + r^3p1  + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)
+//
+//            The coefficients are not exactly these values, but almost.
+//
+//            p1 = -1/6  = -1/3!
+//            p2 = 1/120 =  1/5!
+//            p3 = -1/5040 = -1/7!
+//            p4 = 1/362889 = 1/9!
+//
+//       P =  r + rcub * P
+//
+//    Answer = S[m] Cos(r) + C[m] P
+//
+//       Cos(r) = 1 + rsq Q
+//       Cos(r) = 1 + r^2 Q
+//       Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
+//       Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
+//
+//       S[m] Cos(r) = S[m](1 + rsq Q)
+//       S[m] Cos(r) = S[m] + S[m] rsq Q
+//       S[m] Cos(r) = S[m] + s_rsq Q
+//       Q           = S[m] + s_rsq Q
+//
+// Then,
+//
+//    Answer = Q + C[m] P
+
+// Registers used
+//==============================================================
+// general input registers:
+// r14 -> r39
+
+// predicate registers used:
+// p6 -> p14
+//
+// floating-point registers used
+// f9 -> f15
+// f32 -> f67
+
+// Assembly macros
+//==============================================================
+
+cis_Arg                     = f8
+
+cis_Sin_res                 = f9
+cis_Cos_res                 = f8
+
+cis_NORM_f8                 = f10
+cis_W                       = f11
+cis_int_Nfloat              = f12
+cis_Nfloat                  = f13
+
+cis_r                       = f14
+cis_rsq                     = f15
+cis_rcub                    = f32
+
+cis_Inv_Pi_by_16            = f33
+cis_Pi_by_16_hi             = f34
+cis_Pi_by_16_lo             = f35
+
+cis_Inv_Pi_by_64            = f36
+cis_Pi_by_16_lowest         = f37
+cis_r_exact                 = f38
+
+
+cis_P1                      = f39
+cis_Q1                      = f40
+cis_P2                      = f41
+cis_Q2                      = f42
+cis_P3                      = f43
+cis_Q3                      = f44
+cis_P4                      = f45
+cis_Q4                      = f46
+
+cis_P_temp1                 = f47
+cis_P_temp2                 = f48
+
+cis_Q_temp1                 = f49
+cis_Q_temp2                 = f50
+
+cis_P                       = f51
+
+cis_SIG_INV_PI_BY_16_2TO61  = f52
+cis_RSHF_2TO61              = f53
+cis_RSHF                    = f54
+cis_2TOM61                  = f55
+cis_NFLOAT                  = f56
+cis_W_2TO61_RSH             = f57
+
+cis_tmp                     = f58
+
+cis_Sm_sin                  = f59
+cis_Cm_sin                  = f60
+
+cis_Sm_cos                  = f61
+cis_Cm_cos                  = f62
+
+cis_srsq_sin                = f63
+cis_srsq_cos                = f64
+
+cis_Q_sin                   = f65
+cis_Q_cos                   = f66
+cis_Q                       = f67
+
+/////////////////////////////////////////////////////////////
+
+cis_pResSin                 = r33
+cis_pResCos                 = r34
+
+cis_GR_sig_inv_pi_by_16     = r14
+cis_GR_rshf_2to61           = r15
+cis_GR_rshf                 = r16
+cis_GR_exp_2tom61           = r17
+cis_GR_n                    = r18
+cis_GR_n_sin                = r19
+cis_exp_limit               = r20
+cis_r_signexp               = r21
+cis_AD_1                    = r22
+cis_r_sincos                = r23
+cis_r_exp                   = r24
+cis_r_17_ones               = r25
+cis_GR_m_sin                = r26
+cis_GR_32m_sin              = r26
+cis_GR_n_cos                = r27
+cis_GR_m_cos                = r28
+cis_GR_32m_cos              = r28
+cis_AD_2_sin                = r29
+cis_AD_2_cos                = r30
+cis_gr_tmp                  = r31
+
+GR_SAVE_B0                  = r35
+GR_SAVE_GP                  = r36
+rB0_SAVED                   = r37
+GR_SAVE_PFS                 = r38
+GR_SAVE_PR                  = r39
+
+RODATA
+
+.align 16
+// Pi/16 parts
+LOCAL_OBJECT_START(double_cis_pi)
+   data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
+   data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
+   data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
+LOCAL_OBJECT_END(double_cis_pi)
+
+// Coefficients for polynomials
+LOCAL_OBJECT_START(double_cis_pq_k4)
+   data8 0x3EC71C963717C63A // P4
+   data8 0x3EF9FFBA8F191AE6 // Q4
+   data8 0xBF2A01A00F4E11A8 // P3
+   data8 0xBF56C16C05AC77BF // Q3
+   data8 0x3F8111111110F167 // P2
+   data8 0x3FA555555554DD45 // Q2
+   data8 0xBFC5555555555555 // P1
+   data8 0xBFDFFFFFFFFFFFFC // Q1
+LOCAL_OBJECT_END(double_cis_pq_k4)
+
+// Sincos table (S[m], C[m])
+LOCAL_OBJECT_START(double_sin_cos_beta_k4)
+data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16)  S0
+data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16)  C0
+//
+data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16)  S1
+data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16)  C1
+//
+data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16)  S2
+data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16)  C2
+//
+data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16)  S3
+data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16)  C3
+//
+data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16)  S4
+data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16)  C4
+//
+data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16)  C3
+data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16)  S3
+//
+data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16)  C2
+data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16)  S2
+//
+data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16)  C1
+data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16)  S1
+//
+data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16)  C0
+data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16)  S0
+//
+data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16)  C1
+data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16)  -S1
+//
+data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16)  C2
+data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16)  -S2
+//
+data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16)  C3
+data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16)  -S3
+//
+data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16)  S4
+data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16)  -S4
+//
+data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
+data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
+//
+data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
+data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
+//
+data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
+data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
+//
+data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
+data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
+//
+data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
+data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
+//
+data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
+data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
+//
+data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
+data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
+//
+data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
+data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
+//
+data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
+data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
+//
+data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
+data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
+//
+data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
+data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
+//
+data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
+data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
+//
+data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
+data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
+//
+data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
+data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
+//
+data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
+data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
+//
+data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
+data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
+//
+data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
+data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
+//
+data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
+data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
+//
+data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
+data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
+//
+data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
+data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
+LOCAL_OBJECT_END(double_sin_cos_beta_k4)
+
+.section .text
+
+GLOBAL_IEEE754_ENTRY(sincos)
+// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
+{ .mlx
+      getf.exp      cis_r_signexp       = cis_Arg
+      movl          cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
+
+}
+// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
+{ .mlx
+      addl          cis_AD_1                = @ltoff(double_cis_pi), gp
+      movl          cis_GR_rshf_2to61       = 0x47b8000000000000
+};;
+
+{ .mfi
+      ld8           cis_AD_1            = [cis_AD_1]
+      fnorm.s1      cis_NORM_f8         = cis_Arg
+      cmp.eq        p13, p14            = r0, r0 // p13 set for sincos
+}
+// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
+{ .mib
+      mov           cis_GR_exp_2tom61   = 0xffff-61
+      nop.i         0
+      br.cond.sptk  _CIS_COMMON
+};;
+GLOBAL_IEEE754_END(sincos)
+
+GLOBAL_LIBM_ENTRY(__libm_sincos)
+// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
+{ .mlx
+      getf.exp      cis_r_signexp       = cis_Arg
+      movl          cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
+}
+// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
+{ .mlx
+      addl          cis_AD_1            = @ltoff(double_cis_pi), gp
+      movl          cis_GR_rshf_2to61   = 0x47b8000000000000
+};;
+
+// p14 set for __libm_sincos and cis
+{ .mfi
+      ld8           cis_AD_1            = [cis_AD_1]
+      fnorm.s1      cis_NORM_f8         = cis_Arg
+      cmp.eq        p14, p13            = r0, r0
+}
+// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
+{ .mib
+      mov           cis_GR_exp_2tom61   = 0xffff-61
+      nop.i         0
+      nop.b         0
+};;
+
+_CIS_COMMON:
+//  Form two constants we need
+//  16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
+//  1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
+//  fcmp used to set denormal, and invalid on snans
+{ .mfi
+      setf.sig      cis_SIG_INV_PI_BY_16_2TO61 = cis_GR_sig_inv_pi_by_16
+      fclass.m      p6,p0                      = cis_Arg, 0xe7 // if x=0,inf,nan
+      addl          cis_gr_tmp                 = -1, r0
+}
+// 1.1000 2^63 for right shift
+{ .mlx
+      setf.d        cis_RSHF_2TO61             = cis_GR_rshf_2to61
+      movl          cis_GR_rshf                = 0x43e8000000000000
+};;
+
+//  Form another constant
+//  2^-61 for scaling Nfloat
+//  0x1001a is register_bias + 27.
+//  So if f8 >= 2^27, go to large arguments routine
+{ .mfi
+      alloc         GR_SAVE_PFS         = ar.pfs, 3, 5, 0, 0
+      fclass.m      p11,p0              = cis_Arg, 0x0b // Test for x=unorm
+      mov           cis_exp_limit       = 0x1001a
+}
+{ .mib
+      setf.exp      cis_2TOM61          = cis_GR_exp_2tom61
+      nop.i         0
+(p6)  br.cond.spnt  _CIS_SPECIAL_ARGS
+};;
+
+//  Load the two pieces of pi/16
+//  Form another constant
+//  1.1000...000 * 2^63, the right shift constant
+{ .mmb
+      ldfe          cis_Pi_by_16_hi     = [cis_AD_1],16
+      setf.d        cis_RSHF            = cis_GR_rshf
+(p11) br.cond.spnt  _CIS_UNORM          // Branch if x=unorm
+};;
+
+_CIS_COMMON2:
+// Return here if x=unorm
+// Create constant inexact set
+{ .mmi
+      ldfe          cis_Pi_by_16_lo     = [cis_AD_1],16
+      setf.sig      cis_tmp             = cis_gr_tmp
+      nop.i         0
+};;
+
+// Select exponent (17 lsb)
+{ .mfi
+      ldfe          cis_Pi_by_16_lowest = [cis_AD_1],16
+      nop.f         0
+      dep.z         cis_r_exp           = cis_r_signexp, 0, 17
+};;
+
+// Start loading P, Q coefficients
+// p10 is true if we must call routines to handle larger arguments
+// p10 is true if f8 exp is > 0x1001a
+{ .mmb
+      ldfpd         cis_P4,cis_Q4       = [cis_AD_1],16
+      cmp.ge        p10, p0             = cis_r_exp, cis_exp_limit
+(p10) br.cond.spnt  _CIS_LARGE_ARGS // go to |x| >= 2^27 path
+};;
+
+// cis_W = x * cis_Inv_Pi_by_16
+// Multiply x by scaled 16/pi and add large const to shift integer part of W to
+// rightmost bits of significand
+{ .mfi
+      ldfpd         cis_P3,cis_Q3       = [cis_AD_1],16
+      fma.s1 cis_W_2TO61_RSH = cis_NORM_f8,cis_SIG_INV_PI_BY_16_2TO61,cis_RSHF_2TO61
+      nop.i  0
+};;
+
+// get N = (int)cis_int_Nfloat
+// cis_NFLOAT = Round_Int_Nearest(cis_W)
+{ .mmf
+      getf.sig      cis_GR_n            = cis_W_2TO61_RSH
+      ldfpd  cis_P2,cis_Q2   = [cis_AD_1],16
+      fms.s1        cis_NFLOAT          = cis_W_2TO61_RSH,cis_2TOM61,cis_RSHF
+};;
+
+// cis_r = -cis_Nfloat * cis_Pi_by_16_hi + x
+{ .mfi
+      ldfpd         cis_P1,cis_Q1       = [cis_AD_1], 16
+      fnma.s1       cis_r               = cis_NFLOAT,cis_Pi_by_16_hi,cis_NORM_f8
+      nop.i         0
+};;
+
+// Add 2^(k-1) (which is in cis_r_sincos) to N
+{ .mmi
+      add           cis_GR_n_cos        = 0x8, cis_GR_n
+;;
+//Get M (least k+1 bits of N)
+      and           cis_GR_m_sin        = 0x1f,cis_GR_n
+      and           cis_GR_m_cos        = 0x1f,cis_GR_n_cos
+};;
+
+{ .mmi
+      nop.m         0
+      nop.m         0
+      shl           cis_GR_32m_sin      = cis_GR_m_sin,5
+};;
+
+// Add 32*M to address of sin_cos_beta table
+// cis_r =  cis_r -cis_Nfloat * cis_Pi_by_16_lo
+{ .mfi
+      add           cis_AD_2_sin        = cis_GR_32m_sin, cis_AD_1
+      fnma.s1       cis_r               = cis_NFLOAT, cis_Pi_by_16_lo,  cis_r
+      shl           cis_GR_32m_cos      = cis_GR_m_cos,5
+};;
+
+// Add 32*M to address of sin_cos_beta table
+{ .mmf
+      ldfe          cis_Sm_sin          = [cis_AD_2_sin],16
+      add           cis_AD_2_cos        = cis_GR_32m_cos, cis_AD_1
+      fclass.m.unc  p10,p0              = cis_Arg,0x0b  // den. input - uflow
+};;
+
+{ .mfi
+      ldfe          cis_Sm_cos          = [cis_AD_2_cos], 16
+      nop.i         0
+};;
+
+{ .mfi
+      ldfe          cis_Cm_sin          = [cis_AD_2_sin]
+      fma.s1        cis_rsq             = cis_r, cis_r,   f0  // get r^2
+      nop.i         0
+}
+// fmpy forces inexact flag
+{ .mfi
+      nop.m         0
+      fmpy.s0       cis_tmp             = cis_tmp,cis_tmp
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fnma.s1       cis_r_exact         = cis_NFLOAT, cis_Pi_by_16_lowest, cis_r
+      nop.i         0
+};;
+
+{ .mfi
+      ldfe          cis_Cm_cos          = [cis_AD_2_cos]
+      fma.s1        cis_P_temp1         = cis_rsq, cis_P4, cis_P3
+      nop.i         0
+}
+
+{ .mfi
+      nop.m         0
+      fma.s1        cis_Q_temp1         = cis_rsq, cis_Q4, cis_Q3
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fmpy.s1       cis_srsq_sin        = cis_Sm_sin, cis_rsq
+      nop.i         0
+}
+{ .mfi
+      nop.m         0
+      fmpy.s1       cis_srsq_cos        = cis_Sm_cos,cis_rsq
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fma.s1        cis_Q_temp2         = cis_rsq, cis_Q_temp1, cis_Q2
+      nop.i         0
+}
+{ .mfi
+      nop.m         0
+      fma.s1        cis_P_temp2         = cis_rsq, cis_P_temp1, cis_P2
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fmpy.s1       cis_rcub            = cis_r_exact, cis_rsq // get r^3
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fma.s1        cis_Q               = cis_rsq, cis_Q_temp2, cis_Q1
+      nop.i         0
+}
+{ .mfi
+      nop.m         0
+      fma.s1        cis_P               = cis_rsq, cis_P_temp2, cis_P1
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fma.s1        cis_Q_sin           = cis_srsq_sin,cis_Q, cis_Sm_sin
+      nop.i         0
+}
+{ .mfi
+      nop.m         0
+      fma.s1        cis_Q_cos           = cis_srsq_cos,cis_Q, cis_Sm_cos
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fma.s1        cis_P               = cis_rcub,cis_P, cis_r_exact // final P
+      nop.i         0
+};;
+
+// If den. arg, force underflow to be set
+{ .mfi
+      nop.m         0
+(p10) fmpy.d.s0     cis_tmp             = cis_Arg,cis_Arg
+      nop.i         0
+};;
+
+{ .mfi
+      nop.m         0
+      fma.d.s0      cis_Sin_res         = cis_Cm_sin,cis_P,cis_Q_sin//Final sin
+      nop.i         0
+}
+{ .mfb
+      nop.m         0
+      fma.d.s0      cis_Cos_res         = cis_Cm_cos,cis_P,cis_Q_cos//Final cos
+(p14) br.ret.sptk   b0  // common exit for __libm_sincos and cis main path
+};;
+
+{ .mmb
+      stfd          [cis_pResSin]       = cis_Sin_res
+      stfd          [cis_pResCos]       = cis_Cos_res
+      br.ret.sptk   b0 // common exit for sincos main path
+};;
+
+_CIS_SPECIAL_ARGS:
+// sin(+/-0) = +/-0
+// sin(Inf)  = NaN
+// sin(NaN)  = NaN
+{ .mfi
+      nop.m         999
+      fma.d.s0      cis_Sin_res          = cis_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
+      nop.i         999
+};;
+// cos(+/-0) = 1.0
+// cos(Inf)  = NaN
+// cos(NaN)  = NaN
+{ .mfb
+      nop.m         999
+      fma.d.s0      cis_Cos_res          = cis_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
+(p14) br.ret.sptk   b0 //spec exit for __libm_sincos and cis main path
+};;
+
+{ .mmb
+      stfd          [cis_pResSin]       = cis_Sin_res
+      stfd          [cis_pResCos]       = cis_Cos_res
+      br.ret.sptk   b0 // common exit for sincos main path
+};;
+
+_CIS_UNORM:
+// Here if x=unorm
+{ .mfb
+      getf.exp      cis_r_signexp       = cis_NORM_f8 // Get signexp of x
+      fcmp.eq.s0    p11,p0              = cis_Arg, f0 // Dummy op to set denorm
+      br.cond.sptk  _CIS_COMMON2        // Return to main path
+};;
+
+GLOBAL_LIBM_END(__libm_sincos)
+
+////  |x| > 2^27 path  ///////
+.proc _CIS_LARGE_ARGS
+_CIS_LARGE_ARGS:
+.prologue
+{ .mfi
+      nop.m         0
+      nop.f         0
+.save ar.pfs, GR_SAVE_PFS
+      mov           GR_SAVE_PFS         = ar.pfs
+}
+;;
+
+{ .mfi
+      mov           GR_SAVE_GP          = gp
+      nop.f         0
+.save b0, GR_SAVE_B0
+      mov           GR_SAVE_B0          = b0
+};;
+
+.body
+// Call of huge arguments sincos
+{ .mib
+      nop.m         0
+      mov           GR_SAVE_PR          = pr
+      br.call.sptk  b0                  = __libm_sincos_large
+};;
+
+{ .mfi
+      mov           gp                  = GR_SAVE_GP
+      nop.f         0
+      mov           pr                  = GR_SAVE_PR, 0x1fffe
+}
+;;
+
+{ .mfi
+      nop.m         0
+      nop.f         0
+      mov           b0                  = GR_SAVE_B0
+}
+;;
+
+{ .mfi
+      nop.m         0
+      fma.d.s0      cis_Cos_res         = cis_Cos_res, f1, f0
+      mov           ar.pfs              = GR_SAVE_PFS
+}
+{ .mfb
+      nop.m         0
+      fma.d.s0      cis_Sin_res         = cis_Sin_res, f1, f0
+(p14) br.ret.sptk   b0  // exit for |x| > 2^27 path (__libm_sincos and cis)
+};;
+
+{ .mmb
+      stfd          [cis_pResSin]       = cis_Sin_res
+      stfd          [cis_pResCos]       = cis_Cos_res
+      br.ret.sptk   b0 // exit for sincos |x| > 2^27 path
+};;
+.endp _CIS_LARGE_ARGS
+
+.type __libm_sincos_large#,@function
+.global __libm_sincos_large#