about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_powl.S
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@gmail.com>2012-01-07 11:19:05 -0500
committerUlrich Drepper <drepper@gmail.com>2012-01-07 11:19:05 -0500
commitd75a0a62b12c35ee85f786d5f8d155ab39909411 (patch)
treec3479d23878ef4ab05629d4a60f4f7623269c1dd /sysdeps/ia64/fpu/e_powl.S
parentdcc9756b5bfbb2b97f73bad863d7e1c4002bea98 (diff)
downloadglibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.gz
glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.xz
glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.zip
Remove IA-64 support
Diffstat (limited to 'sysdeps/ia64/fpu/e_powl.S')
-rw-r--r--sysdeps/ia64/fpu/e_powl.S2810
1 files changed, 0 insertions, 2810 deletions
diff --git a/sysdeps/ia64/fpu/e_powl.S b/sysdeps/ia64/fpu/e_powl.S
deleted file mode 100644
index 3f93f6090e..0000000000
--- a/sysdeps/ia64/fpu/e_powl.S
+++ /dev/null
@@ -1,2810 +0,0 @@
-.file "powl.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// Function:   powl(x,y), where
-//                          y
-//             powl(x,y) = x , for double extended precision x and y values
-//
-//*********************************************************************
-//
-// History:
-// 02/02/00 (Hand Optimized)
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
-//          set [the previously overwritten] GR_Parameter_RESULT.
-// 01/22/01 Corrected results for powl(1,inf), powl(1,nan), and
-//          powl(snan,0) to be 1 per C99, not nan.  Fixed many flag settings.
-// 02/06/01 Call __libm_error support if over/underflow when y=2.
-// 04/17/01 Support added for y close to 1 and x a non-special value.
-//          Shared software under/overflow detection for all paths
-// 02/07/02 Corrected sf3 setting to disable traps
-// 05/13/02 Improved performance of all paths
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-//          used data8 for long double table values
-// 04/17/03 Added missing mutex directive
-// 10/13/03 Corrected .endp names to match .proc names
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-//    Floating-Point Registers:
-//                        f8  (Input x and Return Value)
-//                        f9  (Input y)
-//                        f10-f15,f32-f79
-//
-//    General Purpose Registers:
-//                        Locals r14-24,r32-r65
-//                        Parameters to __libm_error_support r62,r63,r64,r65
-//
-//    Predicate Registers: p6-p15
-//
-//*********************************************************************
-//
-//  Special Cases and IEEE special conditions:
-//
-//    Denormal fault raised on denormal inputs
-//    Overflow exceptions raised when appropriate for pow
-//    Underflow exceptions raised when appropriate for pow
-//    (Error Handling Routine called for overflow and Underflow)
-//    Inexact raised when appropriate by algorithm
-//
-//  1.  (anything) ** NatVal or (NatVal) ** anything  is NatVal
-//  2.  X or Y unsupported or sNaN                    is qNaN/Invalid
-//  3.  (anything) ** 0  is 1
-//  4.  (anything) ** 1  is itself
-//  5.  (anything except 1) ** qNAN is qNAN
-//  6.  qNAN ** (anything except 0) is qNAN
-//  7.  +-(|x| > 1) **  +INF is +INF
-//  8.  +-(|x| > 1) **  -INF is +0
-//  9.  +-(|x| < 1) **  +INF is +0
-//  10. +-(|x| < 1) **  -INF is +INF
-//  11. +-1         ** +-INF is +1
-//  12. +0 ** (+anything except 0, NAN)               is +0
-//  13. -0 ** (+anything except 0, NAN, odd integer)  is +0
-//  14. +0 ** (-anything except 0, NAN)               is +INF/div_0
-//  15. -0 ** (-anything except 0, NAN, odd integer)  is +INF/div_0
-//  16. -0 ** (odd integer) = -( +0 ** (odd integer) )
-//  17. +INF ** (+anything except 0,NAN) is +INF
-//  18. +INF ** (-anything except 0,NAN) is +0
-//  19. -INF ** (anything except NAN)  = -0 ** (-anything)
-//  20. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
-//  21. (-anything except 0 and inf) ** (non-integer) is qNAN/Invalid
-//  22. X or Y denorm/unorm and denorm/unorm operand trap is enabled,
-//      generate denorm/unorm fault except if invalid or div_0 raised.
-//
-//*********************************************************************
-//
-//  Algorithm
-//  =========
-//
-//  Special Cases
-//
-//    If Y = 2,    return X*X.
-//    If Y = 0.5,  return sqrt(X).
-//
-//  Compute log(X) to extra precision.
-//
-//  ker_log_80( X, logX_hi, logX_lo, Safe );
-//
-//   ...logX_hi + logX_lo approximates log(X) to roughly 80
-//   ...significant bits of accuracy.
-//
-//  Compute Y*log(X) to extra precision.
-//
-//    P_hi := Y * logX_hi
-//    P_lo := Y * logX_hi - P_hi       ...using FMA
-//    P_lo := Y * logX_lo + P_lo       ...using FMA
-//
-//  Compute exp(P_hi + P_lo)
-//
-//    Flag := 2;
-//    Expo_Range := 2; (assuming double-extended power function)
-//    ker_exp_64( P_hi, P_lo, Flag, Expo_Range,
-//                Z_hi, Z_lo, scale, Safe )
-//
-//    scale := sgn * scale
-//
-//    If (Safe) then ...result will not over/underflow
-//       return scale*Z_hi + (scale*Z_lo)
-//       quickly
-//    Else
-//       take necessary precaution in computing
-//       scale*Z_hi + (scale*Z_lo)
-//       to set possible exceptions correctly.
-//    End If
-//
-//  Case_Y_Special
-//
-//   ...Follow the order of the case checks
-//
-//   If Y is +-0, return +1 without raising any exception.
-//   If Y is +1,  return X  without raising any exception.
-//   If Y is qNaN, return Y without exception.
-//   If X is qNaN, return X without exception.
-//
-//   At this point, X is real and Y is +-inf.
-//   Thus |X| can only be 1, strictly bigger than 1, or
-//   strictly less than 1.
-//
-//   If |X| < 1, then
-//   return ( Y == +inf?  +0 : +inf )
-//   elseif |X| > 1, then
-//   return ( Y == +inf? +0 : +inf )
-//   else
-//   goto Case_Invalid
-//
-//  Case_X_Special
-//
-//   ...Follow the order of the case checks
-//   ...Note that Y is real, finite, non-zero, and not +1.
-//
-//   If X is qNaN, return X without exception.
-//
-//   If X is +-0,
-//   return ( Y > 0 ? +0 : +inf )
-//
-//   If X is +inf
-//   return ( Y > 0 ? +inf : +0 )
-//
-//   If X is -inf
-//   return -0 ** -Y
-//   return ( Y > 0 ? +inf : +0 )
-//
-//  Case_Invalid
-//
-//   Return 0 * inf to generate a quiet NaN together
-//   with an invalid exception.
-//
-//  Implementation
-//  ==============
-//
-//   We describe the quick branch since this part is important
-//   in reaching the normal case efficiently.
-//
-//  STAGE 1
-//  -------
-//   This stage contains two threads.
-//
-//   Stage1.Thread1
-//
-//     fclass.m   X_excep,  X_ok   = X, (NatVal or s/qNaN) or
-//                              +-0, +-infinity
-//
-//     fclass.nm  X_unsupp, X_supp = X, (NatVal or s/qNaN) or
-//                              +-(0, unnorm, norm, infinity)
-//
-//     X_norm := fnorm( X ) with traps disabled
-//
-//     If (X_excep)  goto Filtering (Step 2)
-//     If (X_unsupp) goto Filtering (Step 2)
-//
-//     Stage1.Thread2
-//     ..............
-//
-//     fclass.m   Y_excep,  Y_ok   = Y, (NatVal or s/qNaN) or
-//                              +-0, +-infinity
-//
-//     fclass.nm  Y_unsupp, Y_supp = Y, (NatVal or s/qNaN) or
-//                              +-(0, unnorm, norm, infinity)
-//
-//     Y_norm := fnorm( Y ) with traps disabled
-//
-//     If (Y_excep)  goto Filtering (Step 2)
-//     If (Y_unsupp) goto Filtering (Step 2)
-//
-//
-//  STAGE 2
-//  -------
-//  This stage contains two threads.
-//
-//     Stage2.Thread1
-//     ..............
-//
-//     Set X_lt_0 if X < 0 (using fcmp)
-//     sgn := +1.0
-//     If (X_lt_0) goto Filtering (Step 2)
-//
-//     Stage2.Thread2
-//     ..............
-//
-//     Set Y_is_1 if Y = +1 (using fcmp)
-//     If (Y_is_1) goto Filtering (Step 2)
-//
-//   STAGE 3
-//   -------
-//   This stage contains two threads.
-//
-//
-//   Stage3.Thread1
-//   ..............
-//
-//     X := fnorm(X) in prevailing traps
-//
-//
-//     Stage3.Thread2
-//     ..............
-//
-//     Y := fnorm(Y) in prevailing traps
-//
-//   STAGE 4
-//   -------
-//
-//   Go to Case_Normal.
-//
-
-
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
-
-// double-extended 1/ln(2)
-// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
-// 3fff b8aa 3b29 5c17 f0bc
-// For speed the significand will be loaded directly with a movl and setf.sig
-//   and the exponent will be bias+63 instead of bias+0.  Thus subsequent
-//   computations need to scale appropriately.
-// The constant 2^12/ln(2) is needed for the computation of N.  This is also
-//   obtained by scaling the computations.
-//
-// Two shifting constants are loaded directly with movl and setf.d.
-//   1. RSHF_2TO51 = 1.1000..00 * 2^(63-12)
-//        This constant is added to x*1/ln2 to shift the integer part of
-//        x*2^12/ln2 into the rightmost bits of the significand.
-//        The result of this fma is N_signif.
-//   2. RSHF       = 1.1000..00 * 2^(63)
-//        This constant is subtracted from N_signif * 2^(-51) to give
-//        the integer part of N, N_fix, as a floating-point number.
-//        The result of this fms is float_N.
-RODATA
-
-.align 16
-// L_hi, L_lo
-LOCAL_OBJECT_START(Constants_exp_64_Arg)
-data8 0xB17217F400000000,0x00003FF2 // L_hi = hi part log(2)/2^12
-data8 0xF473DE6AF278ECE6,0x00003FD4 // L_lo = lo part log(2)/2^12
-LOCAL_OBJECT_END(Constants_exp_64_Arg)
-
-LOCAL_OBJECT_START(Constants_exp_64_A)
-// Reversed
-data8 0xAAAAAAABB1B736A0,0x00003FFA
-data8 0xAAAAAAAB90CD6327,0x00003FFC
-data8 0xFFFFFFFFFFFFFFFF,0x00003FFD
-LOCAL_OBJECT_END(Constants_exp_64_A)
-
-LOCAL_OBJECT_START(Constants_exp_64_P)
-// Reversed
-data8 0xD00D6C8143914A8A,0x00003FF2
-data8 0xB60BC4AC30304B30,0x00003FF5
-data8 0x888888887474C518,0x00003FF8
-data8 0xAAAAAAAA8DAE729D,0x00003FFA
-data8 0xAAAAAAAAAAAAAF61,0x00003FFC
-data8 0x80000000000004C7,0x00003FFE
-LOCAL_OBJECT_END(Constants_exp_64_P)
-
-LOCAL_OBJECT_START(Constants_exp_64_T1)
-data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
-data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
-data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
-data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
-data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
-data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
-data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
-data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
-data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
-data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
-data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
-data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
-data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
-data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
-data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
-data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
-LOCAL_OBJECT_END(Constants_exp_64_T1)
-
-LOCAL_OBJECT_START(Constants_exp_64_T2)
-data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
-data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
-data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
-data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
-data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
-data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
-data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
-data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
-data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
-data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
-data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
-data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
-data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
-data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
-data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
-data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
-LOCAL_OBJECT_END(Constants_exp_64_T2)
-
-LOCAL_OBJECT_START(Constants_exp_64_W1)
-data8 0x0000000000000000, 0xBE384454171EC4B4
-data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
-data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
-data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
-data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
-data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
-data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
-data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
-data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
-data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
-data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
-data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
-data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
-data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
-data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
-data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
-data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
-data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
-data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
-data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
-data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
-data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
-data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
-data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
-data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
-data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
-data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
-data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
-data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
-data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
-data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
-data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
-LOCAL_OBJECT_END(Constants_exp_64_W1)
-
-LOCAL_OBJECT_START(Constants_exp_64_W2)
-data8 0x0000000000000000, 0xBE641F2537A3D7A2
-data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
-data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
-data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
-data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
-data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
-data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
-data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
-data8 0xBE56856B49BFF529, 0x3E66DD3300508651
-data8 0x3E51165FC114BC13, 0x3E53333DC453290F
-data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
-data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
-data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
-data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
-data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
-data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
-data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
-data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
-data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
-data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
-data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
-data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
-data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
-data8 0xBE559725ADE45917, 0xBE68C29C042FC476
-data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
-data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
-data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
-data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
-data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
-data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
-data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
-data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
-LOCAL_OBJECT_END(Constants_exp_64_W2)
-
-LOCAL_OBJECT_START(Constants_log_80_P)
-// P_8, P_7, ..., P_1
-data8 0xCCCE8B883B1042BC, 0x0000BFFB // P_8
-data8 0xE38997B7CADC2149, 0x00003FFB // P_7
-data8 0xFFFFFFFEB1ACB090, 0x0000BFFB // P_6
-data8 0x9249249806481C81, 0x00003FFC // P_5
-data8 0x0000000000000000, 0x00000000 // Pad for bank conflicts
-data8 0xAAAAAAAAAAAAB0EF, 0x0000BFFC // P_4
-data8 0xCCCCCCCCCCC91416, 0x00003FFC // P_3
-data8 0x8000000000000000, 0x0000BFFD // P_2
-data8 0xAAAAAAAAAAAAAAAB, 0x00003FFD // P_1
-LOCAL_OBJECT_END(Constants_log_80_P)
-
-LOCAL_OBJECT_START(Constants_log_80_Q)
-// log2_hi, log2_lo, Q_6, Q_5, Q_4, Q_3, Q_2, Q_1
-data8 0xB172180000000000,0x00003FFE
-data8 0x82E308654361C4C6,0x0000BFE2
-data8 0x92492453A51BE0AF,0x00003FFC
-data8 0xAAAAAB73A0CFD29F,0x0000BFFC
-data8 0xCCCCCCCCCCCE3872,0x00003FFC
-data8 0xFFFFFFFFFFFFB4FB,0x0000BFFC
-data8 0xAAAAAAAAAAAAAAAB,0x00003FFD
-data8 0x8000000000000000,0x0000BFFE
-LOCAL_OBJECT_END(Constants_log_80_Q)
-
-LOCAL_OBJECT_START(Constants_log_80_Z_G_H_h1)
-// Z1 - 16 bit fixed, G1 and H1 IEEE single, h1 IEEE double
-data4 0x00008000,0x3F800000,0x00000000,0x00000000
-data4 0x00000000,0x00000000,0x00000000,0x00000000
-data4 0x00007879,0x3F70F0F0,0x3D785196,0x00000000
-data4 0xEBA0E0D1,0x8B1D330B,0x00003FDA,0x00000000
-data4 0x000071C8,0x3F638E38,0x3DF13843,0x00000000
-data4 0x9EADD553,0xE2AF365E,0x00003FE2,0x00000000
-data4 0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000
-data4 0x752F34A2,0xF585FEC3,0x0000BFE3,0x00000000
-data4 0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000
-data4 0x893B03F3,0xF3546435,0x00003FE2,0x00000000
-data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000
-data4 0x39CDD2AC,0xBABA62E0,0x00003FE4,0x00000000
-data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000
-data4 0x457978A1,0x8718789F,0x00003FE2,0x00000000
-data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000
-data4 0x3185E56A,0x9442DF96,0x0000BFE4,0x00000000
-data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000
-data4 0x2BBE2CBD,0xCBF9A4BF,0x00003FE4,0x00000000
-data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000
-data4 0x852D5935,0xF3537535,0x00003FE3,0x00000000
-data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000
-data4 0x46CDF32F,0xA1F1E699,0x0000BFDF,0x00000000
-data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000
-data4 0xD8484CE3,0x84A61856,0x00003FE4,0x00000000
-data4 0x00004925,0x3F124920,0x3F0F4303,0x00000000
-data4 0xFF28821B,0xC7DD97E0,0x0000BFE2,0x00000000
-data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000
-data4 0xEF1FD32F,0xD3C4A887,0x00003FE3,0x00000000
-data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000
-data4 0x464C76DA,0x84672BE6,0x00003FE5,0x00000000
-data4 0x00004211,0x3F042108,0x3F29516A,0x00000000
-data4 0x18835FB9,0x9A43A511,0x0000BFE5,0x00000000
-LOCAL_OBJECT_END(Constants_log_80_Z_G_H_h1)
-
-LOCAL_OBJECT_START(Constants_log_80_Z_G_H_h2)
-// Z2 - 16 bit fixed, G2 and H2 IEEE single, h2 IEEE double
-data4 0x00008000,0x3F800000,0x00000000,0x00000000
-data4 0x00000000,0x00000000,0x00000000,0x00000000
-data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000
-data4 0x211398BF,0xAD08B116,0x00003FDB,0x00000000
-data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000
-data4 0xC376958E,0xB106790F,0x00003FDE,0x00000000
-data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000
-data4 0x79A7679A,0xFD03F242,0x0000BFDA,0x00000000
-data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000
-data4 0x05E7AE08,0xF03F81C3,0x0000BFDF,0x00000000
-data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000
-data4 0x049EB22F,0xD1B87D3C,0x00003FDE,0x00000000
-data4 0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000
-data4 0x3A9E81E0,0xFABC8B95,0x00003FDF,0x00000000
-data4 0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000
-data4 0x7C4B5443,0xF5F3653F,0x00003FDF,0x00000000
-data4 0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000
-data4 0xF65A1773,0xE78AB204,0x00003FE0,0x00000000
-data4 0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000
-data4 0x7B8EF695,0xDB7CBFFF,0x0000BFE0,0x00000000
-data4 0x00007B31,0x3F766038,0x3D1CF49B,0x00000000
-data4 0xCF773FB3,0xC0241AEA,0x0000BFE0,0x00000000
-data4 0x00007ABB,0x3F757400,0x3D2C531D,0x00000000
-data4 0xC9539FDF,0xFC8F4D48,0x00003FE1,0x00000000
-data4 0x00007A45,0x3F748988,0x3D3BA322,0x00000000
-data4 0x954665C2,0x9CD035FB,0x0000BFE1,0x00000000
-data4 0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000
-data4 0xDD367A30,0xEC9017C7,0x00003FE1,0x00000000
-data4 0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000
-data4 0xCB11189C,0xEE6625D3,0x0000BFE1,0x00000000
-data4 0x000078EB,0x3F71D488,0x3D693B9D,0x00000000
-data4 0xBE11C424,0xA49C8DB5,0x0000BFE0,0x00000000
-LOCAL_OBJECT_END(Constants_log_80_Z_G_H_h2)
-
-LOCAL_OBJECT_START(Constants_log_80_h3_G_H)
-// h3 IEEE double extended, H3 and G3 IEEE single
-data4 0x112666B0,0xAAACAAB1,0x00003FD3,0x3F7FFC00
-data4 0x9B7FAD21,0x90051030,0x00003FD8,0x3F7FF400
-data4 0xF4D783C4,0xA6B46F46,0x00003FDA,0x3F7FEC00
-data4 0x11C6DDCA,0xDA148D88,0x0000BFD8,0x3F7FE400
-data4 0xCA964D95,0xCE65C1D8,0x0000BFD8,0x3F7FDC00
-data4 0x23412D13,0x883838EE,0x0000BFDB,0x3F7FD400
-data4 0x983ED687,0xB7E5CFA1,0x00003FDB,0x3F7FCC08
-data4 0xE3C3930B,0xDBE23B16,0x0000BFD9,0x3F7FC408
-data4 0x48AA4DFC,0x9B92F1FC,0x0000BFDC,0x3F7FBC10
-data4 0xCE9C8F7E,0x9A8CEB15,0x0000BFD9,0x3F7FB410
-data4 0x0DECE74A,0x8C220879,0x00003FDC,0x3F7FAC18
-data4 0x2F053150,0xB25CA912,0x0000BFDA,0x3F7FA420
-data4 0xD9A5BE20,0xA5876555,0x00003FDB,0x3F7F9C20
-data4 0x2053F087,0xC919BB6E,0x00003FD9,0x3F7F9428
-data4 0x041E9A77,0xB70BDA79,0x00003FDC,0x3F7F8C30
-data4 0xEA1C9C30,0xF18A5C08,0x00003FDA,0x3F7F8438
-data4 0x796D89E5,0xA3790D84,0x0000BFDD,0x3F7F7C40
-data4 0xA2915A3A,0xE1852369,0x0000BFDD,0x3F7F7448
-data4 0xA39ED868,0xD803858F,0x00003FDC,0x3F7F6C50
-data4 0x9417EBB7,0xB2EEE356,0x0000BFDD,0x3F7F6458
-data4 0x9BB0D07F,0xED5C1F8A,0x0000BFDC,0x3F7F5C68
-data4 0xE87C740A,0xD6D201A0,0x0000BFDD,0x3F7F5470
-data4 0x1CA74025,0xE8DEBF5E,0x00003FDC,0x3F7F4C78
-data4 0x1F34A7EB,0x9A995A97,0x0000BFDC,0x3F7F4488
-data4 0x359EED97,0x9CB0F742,0x0000BFDA,0x3F7F3C90
-data4 0xBBC6A1C8,0xD6F833C2,0x0000BFDD,0x3F7F34A0
-data4 0xE71090EC,0xE1F68F2A,0x00003FDC,0x3F7F2CA8
-data4 0xC160A74F,0xD1881CF1,0x0000BFDB,0x3F7F24B8
-data4 0xD78CB5A4,0x9AD05AE2,0x00003FD6,0x3F7F1CC8
-data4 0x9A77DC4B,0xE658CB8E,0x0000BFDD,0x3F7F14D8
-data4 0x6BD6D312,0xBA281296,0x00003FDC,0x3F7F0CE0
-data4 0xF95210D0,0xB478BBEB,0x0000BFDB,0x3F7F04F0
-data4 0x38800100,0x39400480,0x39A00640,0x39E00C41 // H's start here
-data4 0x3A100A21,0x3A300F22,0x3A4FF51C,0x3A6FFC1D
-data4 0x3A87F20B,0x3A97F68B,0x3AA7EB86,0x3AB7E101
-data4 0x3AC7E701,0x3AD7DD7B,0x3AE7D474,0x3AF7CBED
-data4 0x3B03E1F3,0x3B0BDE2F,0x3B13DAAA,0x3B1BD766
-data4 0x3B23CC5C,0x3B2BC997,0x3B33C711,0x3B3BBCC6
-data4 0x3B43BAC0,0x3B4BB0F4,0x3B53AF6D,0x3B5BA620
-data4 0x3B639D12,0x3B6B9444,0x3B7393BC,0x3B7B8B6D
-LOCAL_OBJECT_END(Constants_log_80_h3_G_H)
-
-GR_sig_inv_ln2      = r14
-GR_rshf_2to51       = r15
-GR_exp_2tom51       = r16
-GR_rshf             = r17
-GR_exp_half         = r18
-GR_sign_mask        = r19
-GR_exp_square_oflow = r20
-GR_exp_square_uflow = r21
-GR_exp_ynear1_oflow = r22
-GR_exp_ynear1_uflow = r23
-GR_signif_Z         = r24
-
-GR_signexp_x        = r32
-
-GR_exp_x            = r33
-
-GR_Table_Ptr        = r34
-
-GR_Table_Ptr1       = r35
-
-GR_Index1           = r36
-
-GR_Index2           = r37
-GR_Expo_X           = r37
-
-GR_M                = r38
-
-GR_X_0              = r39
-GR_Mask             = r39
-
-GR_X_1              = r40
-GR_W1_ptr           = r40
-
-GR_W2_ptr           = r41
-GR_X_2              = r41
-
-GR_Z_1              = r42
-GR_M2               = r42
-
-GR_M1               = r43
-GR_Z_2              = r43
-
-GR_N                = r44
-GR_k                = r44
-
-GR_Big_Pos_Exp      = r45
-
-GR_exp_pos_max      = r46
-
-GR_exp_bias_p_k     = r47
-
-GR_Index3           = r48
-GR_temp             = r48
-
-GR_vsm_expo         = r49
-
-GR_T1_ptr           = r50
-GR_P_ptr1           = r50
-GR_T2_ptr           = r51
-GR_P_ptr2           = r51
-GR_N_fix            = r52
-GR_exp_y            = r53
-GR_signif_y         = r54
-GR_signexp_y        = r55
-GR_fraction_y       = r55
-GR_low_order_bit    = r56
-GR_exp_mask         = r57
-GR_exp_bias         = r58
-GR_y_sign           = r59
-GR_table_base       = r60
-GR_ptr_exp_Arg      = r61
-GR_Delta_Exp        = r62
-GR_Special_Exp      = r63
-GR_exp_neg_max      = r64
-GR_Big_Neg_Exp      = r65
-
-//** Registers for unwind support
-
-GR_SAVE_PFS         = r59
-GR_SAVE_B0          = r60
-GR_SAVE_GP          = r61
-GR_Parameter_X      = r62
-GR_Parameter_Y      = r63
-GR_Parameter_RESULT = r64
-GR_Parameter_TAG    = r65
-
-//**
-
-FR_Input_X          = f8
-FR_Result           = f8
-FR_Input_Y          = f9
-
-FR_Neg              = f10
-FR_P_hi             = f10
-FR_X                = f10
-
-FR_Half             = f11
-FR_h_3              = f11
-FR_poly_hi          = f11
-
-FR_Sgn              = f12
-
-FR_half_W           = f13
-
-FR_X_cor            = f14
-FR_P_lo             = f14
-
-FR_W                = f15
-
-FR_X_lo             = f32
-
-FR_S                = f33
-FR_W3               = f33
-
-FR_Y_hi             = f34
-FR_logx_hi          = f34
-
-FR_Z                = f35
-FR_logx_lo          = f35
-FR_GS_hi            = f35
-FR_Y_lo             = f35
-
-FR_r_cor            = f36
-FR_Scale            = f36
-
-FR_G_1              = f37
-FR_G                = f37
-FR_Wsq              = f37
-FR_temp             = f37
-
-FR_H_1              = f38
-FR_H                = f38
-FR_W4               = f38
-
-FR_h                = f39
-FR_h_1              = f39
-FR_N                = f39
-FR_P_7              = f39
-
-FR_G_2              = f40
-FR_P_8              = f40
-FR_L_hi             = f40
-
-FR_H_2              = f41
-FR_L_lo             = f41
-FR_A_1              = f41
-
-FR_h_2              = f42
-
-FR_W1               = f43
-
-FR_G_3              = f44
-FR_P_8              = f44
-FR_T1               = f44
-
-FR_log2_hi          = f45
-FR_W2               = f45
-
-FR_GS_lo            = f46
-FR_T2               = f46
-
-FR_W_1_p1           = f47
-FR_H_3              = f47
-
-FR_float_N          = f48
-
-FR_A_2              = f49
-
-FR_Q_4              = f50
-FR_r4               = f50
-
-FR_Q_3              = f51
-FR_A_3              = f51
-
-FR_Q_2              = f52
-FR_P_2              = f52
-
-FR_Q_1              = f53
-FR_P_1              = f53
-FR_T                = f53
-
-FR_Wp1              = f54
-FR_Q_5              = f54
-FR_P_3              = f54
-
-FR_Q_6              = f55
-
-FR_log2_lo          = f56
-FR_Two              = f56
-
-FR_Big              = f57
-
-FR_neg_2_mK         = f58
-
-FR_r                = f59
-
-FR_poly_lo          = f60
-
-FR_poly             = f61
-
-FR_P_5              = f62
-FR_Result_small     = f62
-
-FR_rsq              = f63
-
-FR_Delta            = f64
-
-FR_save_Input_X     = f65
-FR_norm_X           = f66
-FR_norm_Y           = f67
-FR_Y_lo_2           = f68
-
-FR_P_6              = f69
-FR_Result_big       = f69
-
-FR_RSHF_2TO51       = f70
-FR_INV_LN2_2TO63    = f71
-FR_2TOM51           = f72
-FR_RSHF             = f73
-FR_TMP1             = f74
-FR_TMP2             = f75
-FR_TMP3             = f76
-FR_Tscale           = f77
-FR_P_4              = f78
-FR_NBig             = f79
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(powl)
-//
-//     Get significand of x.  It is the critical path.
-//
-{ .mfi
-      getf.sig GR_signif_Z = FR_Input_X    // Get significand of x
-      fclass.m p11, p12 = FR_Input_X, 0x0b // Test x unorm
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fnorm.s1 FR_norm_X = FR_Input_X      // Normalize x
-      mov GR_exp_half = 0xffff - 1         // Exponent for 0.5
-}
-;;
-
-{ .mfi
-      alloc  r32 = ar.pfs,0,30,4,0
-      fclass.m p7, p0 =  FR_Input_Y, 0x1E7 // Test y natval, nan, inf, zero
-      mov GR_exp_pos_max = 0x13fff         // Max exponent for pos oflow test
-}
-{ .mfi
-      addl GR_table_base = @ltoff(Constants_exp_64_Arg#), gp // Ptr to tables
-      fnorm.s1 FR_norm_Y = FR_Input_Y      // Normalize y
-      mov GR_exp_neg_max = 0x33fff         // Max exponent for neg oflow test
-}
-;;
-
-{ .mfi
-      getf.exp GR_signexp_y = FR_Input_Y   // Get sign and exp of y
-(p12) fclass.m p11, p0 =  FR_Input_Y, 0x0b // Test y unorm
-      mov GR_sign_mask = 0x20000           // Sign mask
-}
-{ .mfi
-      ld8 GR_table_base = [GR_table_base]  // Get base address for tables
-      fadd.s1 FR_Two = f1, f1              // Form 2.0 for square test
-      mov GR_exp_mask = 0x1FFFF            // Exponent mask
-}
-;;
-
-{ .mfi
-      getf.sig GR_signif_y = FR_Input_Y    // Get significand of y
-      fclass.m p6, p0 =  FR_Input_X, 0x1E7 // Test x natval, nan, inf, zero
-      nop.i 999
-}
-;;
-
-{ .mfi
-      getf.exp GR_signexp_x = FR_Input_X   // Get signexp of x
-      fmerge.s FR_save_Input_X = FR_Input_X, FR_Input_X
-      extr.u GR_Index1 = GR_signif_Z, 59, 4  // Extract upper 4 signif bits of x
-}
-{ .mfb
-      setf.exp FR_Half = GR_exp_half       // Load half
-      nop.f 999
-(p11) br.cond.spnt  POWL_DENORM            // Branch if x or y denorm/unorm
-}
-;;
-
-// Return here from POWL_DENORM
-POWL_COMMON:
-{ .mfi
-      setf.exp FR_Big = GR_exp_pos_max     // Form big pos value for oflow test
-      fclass.nm p11, p0 = FR_Input_Y, 0x1FF // Test Y unsupported
-      shl GR_Index1 = GR_Index1,5          // Adjust index1 pointer x 32
-}
-{ .mfi
-      add GR_Table_Ptr = 0x7c0, GR_table_base // Constants_log_80_Z_G_H_h1
-      fma.s1 FR_Sgn = f1,f1,f0             // Assume result positive
-      mov GR_exp_bias = 0xFFFF             // Form exponent bias
-}
-;;
-
-//
-//     Identify NatVals, NaNs, Infs, and Zeros.
-//
-//
-//     Remove sign bit from exponent of y.
-//     Check for x = 1
-//     Branch on Infs, Nans, Zeros, and Natvals
-//     Check to see that exponent < 0
-//
-{ .mfi
-      setf.exp FR_NBig = GR_exp_neg_max    // Form big neg value for oflow test
-      fclass.nm p8, p0 =  FR_Input_X, 0x1FF  // Test X unsupported
-      and GR_exp_y = GR_exp_mask,GR_signexp_y // Get biased exponent of y
-}
-{ .mfb
-      add GR_Index1 = GR_Index1,GR_Table_Ptr
-      nop.f 999
-(p6)  br.cond.spnt POWL_64_SPECIAL         // Branch if x natval, nan, inf, zero
-}
-;;
-
-//     load Z_1 from Index1
-
-// There is logic starting here to determine if y is an integer when x < 0.
-// If 0 < |y| < 1 then clearly y is not an integer.
-// If |y| > 1, then the significand of y is shifted left by the size of
-//    the exponent of y.  This preserves the lsb of the integer part + the
-//    fractional bits.  The lsb of the integer can be tested to determine if
-//    the integer is even or odd.  The fractional bits can be tested.  If zero,
-//    then y is an integer.
-//
-{ .mfi
-      ld2 GR_Z_1 =[GR_Index1],4            // Load Z_1
-      fmerge.s FR_Z = f0, FR_norm_X        // Z = |x|
-      extr.u GR_X_0 = GR_signif_Z, 49, 15  // Extract X_0 from significand
-}
-{ .mfb
-      cmp.lt p9, p0 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1
-      nop.f 999
-(p7)  br.cond.spnt POWL_64_SPECIAL         // Branch if y natval, nan, inf, zero
-}
-;;
-
-{ .mfb
-      ldfs  FR_G_1 = [GR_Index1],4         // Load G_1
-      fcmp.eq.s1 p10, p0 =  FR_Input_Y, f1 // Test Y = +1.0
-(p8)  br.cond.spnt POWL_64_UNSUPPORT       // Branch if x unsupported
-}
-;;
-
-//
-//     X_0  = High order 15 bit of Z
-//
-{ .mfb
-      ldfs  FR_H_1 = [GR_Index1],8             // Load H_1
-(p9)  fcmp.lt.unc.s1 p9, p0 = FR_Input_X, f0   // Test x<0, 0 <|y|<1
-(p11) br.cond.spnt POWL_64_UNSUPPORT           // Branch if y unsupported
-}
-;;
-
-{ .mfi
-      ldfe FR_h_1 = [GR_Index1]                // Load h_1
-      fcmp.eq.s1 p7, p0 =  FR_Input_Y, FR_Two  // Test y = 2.0
-      pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15     // X_1 = X_0 * Z_1 (bits 15-30)
-                                               // Wait 4 cycles to use result
-}
-{ .mfi
-      add GR_Table_Ptr = 0x9c0, GR_table_base  // Constants_log_80_Z_G_H_h2
-      nop.f 999
-      sub GR_exp_y = GR_exp_y,GR_exp_bias      // Get true exponent of y
-}
-;;
-
-//
-//      Branch for (x < 0) and Y not an integer.
-//
-{ .mfb
-      nop.m 999
-      fcmp.lt.s1 p6, p0  =  FR_Input_X, f0     // Test x < 0
-(p9)  br.cond.spnt POWL_64_XNEG                // Branch if x < 0, 0 < |y| < 1
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fcmp.eq.s1 p12, p0 =  FR_Input_X, f1     // Test x=+1.0
-      nop.i 999
-}
-{ .mfb
-      nop.m 999
-      fsub.s1 FR_W = FR_Z, f1                  // W = Z - 1
-(p7)  br.cond.spnt POWL_64_SQUARE              // Branch if y=2
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p10) fmpy.s0 FR_Result = FR_Input_X, f1       // If y=+1.0, result=x
-(p6)  shl GR_fraction_y=  GR_signif_y,GR_exp_y // Get lsb of int + fraction
-                                               // Wait 4 cycles to use result
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p12) fma.s0 FR_Result = FR_Input_Y, f0, f1    // If x=1.0, result=1, chk denorm
-      extr.u GR_Index2 = GR_X_1, 6, 4          // Extract index2
-}
-;;
-
-//
-//     N = exponent of Z
-//
-{ .mib
-      getf.exp GR_N =  FR_Z                    // Get exponent of Z (also x)
-      shl GR_Index2=GR_Index2,5                // Index2  x 32 bytes
-(p10) br.ret.spnt  b0                          // Exit if y=+1.0
-}
-;;
-
-{ .mib
-      add GR_Index2 = GR_Index2, GR_Table_Ptr  // Pointer to table 2
-      nop.i 999
-(p12) br.ret.spnt  b0                          // Exit if x=+1.0
-}
-;;
-
-{ .mmi
-      ld2 GR_Z_2 =[GR_Index2],4                // Load Z_2
-;;
-      ldfs  FR_G_2 = [GR_Index2],4             // Load G_2
-      nop.i 999
-}
-;;
-
-{ .mii
-      ldfs  FR_H_2 = [GR_Index2],8             // Load H_2
-(p6)  tbit.nz.unc p9, p0 = GR_fraction_y, 63   // Test x<0 and y odd integer
-      add GR_Table_Ptr = 0xbcc, GR_table_base  // Constants_log_80_h3_G_H, G_3
-}
-;;
-
-//
-//      For x < 0 and y odd integer,, set sign = -1.
-//
-{ .mfi
-      getf.exp GR_M = FR_W                      // Get signexp of W
-      nop.f 999
-      pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15      // X_2 = X_1 * Z_2 (bits 15-30)
-}
-{ .mfi
-      ldfe FR_h_2 = [GR_Index2]                // Load h_2
-(p9)  fnma.s1 FR_Sgn = f1, f1, f0          // If x<0, y odd int, result negative
-      sub GR_N = GR_N, GR_exp_bias             // Get true exponent of x = N
-}
-;;
-
-{ .mfi
-      add GR_Table_Ptr1 = 0xdc0, GR_table_base // Ptr to H_3
-      fcmp.eq.s0 p11, p0 = FR_Input_Y, FR_Half // Test y=0.5, also set denorm
-(p6)  shl GR_fraction_y=  GR_fraction_y, 1     // Shift left 1 to get fraction
-}
-;;
-
-{ .mmb
-      setf.sig FR_float_N = GR_N
-(p6)  cmp.ne.unc p8, p0 = GR_fraction_y, r0    // Test x<0 and y not integer
-(p8)  br.cond.spnt POWL_64_XNEG                // Branch if x<0 and y not int
-}
-;;
-
-//
-//      Raise possible denormal operand exception for both X and Y.
-//      Set pointers in case |x| near 1
-//      Branch to embedded sqrt(x) if y=0.5
-//
-{ .mfi
-      add GR_P_ptr1 = 0x6b0, GR_table_base // Constants_log_80_P, P8, NEAR path
-      fcmp.eq.s0 p12, p0 =  FR_Input_X, FR_Input_Y // Dummy to set denormal
-      add GR_P_ptr2 = 0x700, GR_table_base // Constants_log_80_P, P4, NEAR path
-}
-{ .mfb
-      cmp.eq p15, p14 =  r0, r0            // Assume result safe (no over/under)
-      fsub.s1  FR_Delta = FR_Input_Y,f1    // Delta = y - 1.0
-(p11) br.cond.spnt POWL_64_SQRT            // Branch if y=0.5
-}
-;;
-
-//
-//     Computes ln( x ) to extra precision
-//     Input  FR 1: FR_X
-//     Output FR 2: FR_Y_hi
-//     Output FR 3: FR_Y_lo
-//     Output PR 1: PR_Safe
-//
-{ .mfi
-      and GR_M = GR_exp_mask, GR_M            // Mask to get exponent of W
-      nop.f 999
-      extr.u GR_Index3 = GR_X_2, 1, 5         // Get index3
-}
-;;
-
-{ .mmi
-      shladd GR_Table_Ptr1 = GR_Index3,2,GR_Table_Ptr1 // Ptr to H_3
-      shladd GR_Index3 = GR_Index3,4,GR_Table_Ptr      // Ptr to G_3
-      sub GR_M = GR_M, GR_exp_bias            // Get true exponent of W
-}
-;;
-
-{ .mib
-      ldfs FR_G_3 = [GR_Index3],-12           // Load G_3
-      cmp.gt  p7, p14 =  -8, GR_M             // Test if |x-1| < 2^-8
-(p7)  br.cond.spnt LOGL80_NEAR                // Branch if |x-1| < 2^-8
-}
-;;
-
-// Here if |x-1| >= 2^-8
-{ .mmf
-      ldfs FR_H_3 = [GR_Table_Ptr1]           // Load H_3
-      nop.m 999
-      nop.f 999
-}
-;;
-
-{ .mfi
-      ldfe FR_h_3 = [GR_Index3]               // Load h_3
-      fmerge.se FR_S =  f1,FR_Z               // S = merge of 1.0 and signif(Z)
-      nop.i 999
-}
-{ .mfi
-      add GR_Table_Ptr = 0x740, GR_table_base // Constants_log_80_Q
-      fmpy.s1 FR_G = FR_G_1, FR_G_2           // G = G_1 * G_2
-      nop.i 999
-}
-;;
-
-//
-//     Begin Loading Q's -  load log2_hi part
-//
-{ .mfi
-      ldfe FR_log2_hi = [GR_Table_Ptr],16     // Load log2_hi
-      fadd.s1 FR_H = FR_H_1, FR_H_2           // H = H_1 + H_2
-      nop.i 999
-};;
-
-//
-//     h = h_1 + h_2
-//
-{ .mfi
-      ldfe FR_log2_lo = [GR_Table_Ptr],16     // Load log2_lo
-      fadd.s1 FR_h = FR_h_1, FR_h_2           // h = h_1 + h_2
-      nop.i 999
-}
-;;
-
-{ .mfi
-      ldfe FR_Q_6 = [GR_Table_Ptr],16         // Load Q_6
-      fcvt.xf FR_float_N = FR_float_N
-      nop.i 999
-}
-;;
-
-{ .mfi
-      ldfe FR_Q_5 = [GR_Table_Ptr],16         // Load Q_5
-      nop.f 999
-      nop.i 999
-}
-;;
-
-//
-//     G = G_1 * G_2 * G_3
-//
-{ .mfi
-      ldfe FR_Q_4 = [GR_Table_Ptr],16         // Load Q_4
-      fmpy.s1 FR_G = FR_G, FR_G_3
-      nop.i 999
-}
-;;
-
-//
-//     H = H_1 + H_2 + H_3
-//
-{ .mfi
-      ldfe FR_Q_3 = [GR_Table_Ptr],16         // Load Q_3
-      fadd.s1 FR_H = FR_H, FR_H_3
-      nop.i 999
-}
-;;
-
-//
-//     Y_lo = poly + Y_lo
-//
-//     h = h_1 + h_2 + h_3
-//
-{ .mfi
-      ldfe FR_Q_2 = [GR_Table_Ptr],16         // Load Q_2
-      fadd.s1 FR_h = FR_h, FR_h_3
-      nop.i 999
-}
-;;
-
-//
-//     GS_hi = G*S
-//     r = G*S -1
-//
-{ .mfi
-      ldfe FR_Q_1 = [GR_Table_Ptr],16         // Load Q_1
-      fmpy.s1 FR_GS_hi = FR_G, FR_S
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fms.s1 FR_r = FR_G, FR_S, f1
-      nop.i 999
-}
-;;
-
-//
-//     poly_lo = Q_5 + r * Q_6
-//
-{ .mfi
-      getf.exp GR_Delta_Exp =  FR_Delta     // Get signexp of y-1 for exp calc
-      fma.s1 FR_poly_lo = FR_r, FR_Q_6, FR_Q_5
-      nop.i 999
-}
-//
-//     r_cor = GS_hi -1
-//
-{ .mfi
-      nop.m 999
-      fsub.s1 FR_r_cor = FR_GS_hi, f1
-      nop.i 999
-}
-;;
-
-//
-//     GS_lo  = G*S - GS_hi
-//
-{ .mfi
-      nop.m 999
-      fms.s1 FR_GS_lo = FR_G, FR_S, FR_GS_hi
-      nop.i 999
-}
-;;
-
-//
-//     rsq = r * r
-//
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_rsq = FR_r, FR_r
-      nop.i 999
-}
-//
-//     G = float_N*log2_hi + H
-//
-{ .mfi
-      nop.m 999
-      fma.s1 FR_G = FR_float_N, FR_log2_hi, FR_H
-      nop.i 999
-}
-;;
-
-//
-//     Y_lo = float_N*log2_lo + h
-//
-{ .mfi
-      nop.m 999
-      fma.s1 FR_Y_lo = FR_float_N, FR_log2_lo, FR_h
-      nop.i 999
-}
-;;
-
-//
-//      poly_lo = Q_4 + r * poly_lo
-//      r_cor = r_cor - r
-//
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly_lo = FR_r, FR_poly_lo, FR_Q_4
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fsub.s1 FR_r_cor = FR_r_cor, FR_r
-      nop.i 999
-}
-;;
-
-//
-//      poly_hi = r * Q_2 + Q_1
-//      Y_hi = G + r
-//
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly = FR_r, FR_Q_2, FR_Q_1
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fadd.s1 FR_Y_hi = FR_G, FR_r
-      nop.i 999
-}
-;;
-
-//
-//      poly_lo = Q_3 + r * poly_lo
-//      r_cor = r_cor + GS_lo
-//
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly_lo = FR_r, FR_poly_lo, FR_Q_3
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fadd.s1 FR_r_cor = FR_r_cor, FR_GS_lo
-      nop.i 999
-}
-;;
-
-//
-//      Y_lo = G - Y_hi
-//
-{ .mfi
-      nop.m 999
-      fsub.s1 FR_Y_lo_2 = FR_G, FR_Y_hi
-      nop.i 999
-}
-;;
-
-//
-//      r_cor = r_cor + Y_lo
-//      poly = poly_hi + rsq * poly_lo
-//
-{ .mfi
-      add  GR_Table_Ptr   = 0x0, GR_table_base   // Constants_exp_64_Arg
-      fadd.s1 FR_r_cor = FR_r_cor, FR_Y_lo
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly = FR_rsq, FR_poly_lo, FR_poly
-      nop.i 999
-}
-;;
-
-//
-//      Load L_hi
-//      Load L_lo
-//      all long before they are needed.
-//      They are used in LOGL_RETURN PATH
-//
-//      Y_lo =  Y_lo + r
-//      poly = rsq * poly + r_cor
-//
-{ .mfi
-      ldfe FR_L_hi = [GR_Table_Ptr],16           // Load L_hi
-      fadd.s1 FR_Y_lo = FR_Y_lo_2, FR_r
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly = FR_rsq, FR_poly, FR_r_cor
-      nop.i 999
-}
-;;
-
-{ .mfb
-      ldfe FR_L_lo = [GR_Table_Ptr],16           // Load L_lo
-      fadd.s1 FR_Y_lo = FR_Y_lo, FR_poly
-      br.cond.sptk LOGL_RETURN                   // Branch to common code
-}
-;;
-
-
-LOGL80_NEAR:
-// Here if |x-1| < 2^-8
-//
-//     Branch LOGL80_NEAR
-//
-
-{ .mmf
-      ldfe FR_P_8 = [GR_P_ptr1],16           // Load P_8
-      ldfe FR_P_4 = [GR_P_ptr2],16           // Load P_4
-      fmpy.s1 FR_Wsq = FR_W, FR_W
-}
-;;
-
-{ .mmi
-      ldfe FR_P_7 = [GR_P_ptr1],16           // Load P_7
-      ldfe FR_P_3 = [GR_P_ptr2],16           // Load P_3
-      nop.i 999
-}
-;;
-
-{ .mmi
-      ldfe FR_P_6 = [GR_P_ptr1],16           // Load P_6
-      ldfe FR_P_2 = [GR_P_ptr2],16           // Load P_2
-      nop.i 999
-}
-;;
-
-{ .mmi
-      ldfe FR_P_5 = [GR_P_ptr1],16           // Load P_5
-      ldfe FR_P_1 = [GR_P_ptr2],16           // Load P_1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      getf.exp GR_Delta_Exp =  FR_Delta      // Get signexp of y-1 for exp calc
-      fmpy.s1 FR_W4 = FR_Wsq, FR_Wsq
-      nop.i 999
-}
-{ .mfi
-      add  GR_Table_Ptr = 0x0, GR_table_base // Constants_exp_64_Arg
-      fmpy.s1 FR_W3 = FR_Wsq, FR_W
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_half_W = FR_Half, FR_W
-      nop.i 999
-}
-;;
-
-{ .mfi
-      ldfe FR_L_hi = [GR_Table_Ptr],16
-      fma.s1 FR_poly_lo = FR_W, FR_P_8,FR_P_7
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly = FR_W, FR_P_4, FR_P_3
-      nop.i 999
-}
-;;
-
-{ .mfi
-      ldfe FR_L_lo = [GR_Table_Ptr],16
-      fnma.s1 FR_Y_hi = FR_W, FR_half_W, FR_W
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly_lo = FR_W, FR_poly_lo, FR_P_6
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly = FR_W, FR_poly, FR_P_2
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fsub.s1 FR_Y_lo = FR_W, FR_Y_hi
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly_lo = FR_W, FR_poly_lo, FR_P_5
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly = FR_W, FR_poly, FR_P_1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fnma.s1 FR_Y_lo = FR_W, FR_half_W, FR_Y_lo
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly = FR_poly_lo, FR_W4, FR_poly
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_Y_lo = FR_poly, FR_W3, FR_Y_lo
-      nop.i 999
-}
-;;
-
-
-LOGL_RETURN:
-// Common code for completion of both logx paths
-
-//
-//     L_hi, L_lo already loaded.
-//
-//
-//     kernel_log_80 computed ln(X)
-//     and return logX_hi and logX_lo as results.
-//     PR_pow_Safe set as well.
-//
-//
-//     Compute Y * (logX_hi + logX_lo)
-//     P_hi -> X
-//     P_lo -> X_cor
-//     (Manipulate names so that inputs are in
-//     the place kernel_exp expects them)
-//
-//     This function computes exp( x  + x_cor)
-//     Input  FR 1: FR_X
-//     Input  FR 2: FR_X_cor
-//     Output FR 3: FR_Y_hi
-//     Output FR 4: FR_Y_lo
-//     Output FR 5: FR_Scale
-//     Output PR 1: PR_Safe
-//
-//     P15 is True
-//
-// Load constants used in computing N using right-shift technique
-{ .mlx
-      mov GR_exp_2tom51 = 0xffff-51
-      movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc  // significand of 1/ln2
-}
-{ .mlx
-      add  GR_Special_Exp = -50,GR_exp_bias
-      movl GR_rshf_2to51 = 0x4718000000000000   // 1.10000 2^(63+51)
-}
-;;
-
-//
-//     Point to Table of W1s
-//     Point to Table of W2s
-//
-{ .mmi
-      add GR_W1_ptr   = 0x2b0, GR_table_base    // Constants_exp_64_W1
-      add GR_W2_ptr   = 0x4b0, GR_table_base    // Constants_exp_64_W2
-      cmp.le p6,p0= GR_Delta_Exp,GR_Special_Exp
-};;
-
-// Form two constants we need
-//  1/ln2 * 2^63  to compute  w = x * 1/ln2 * 128
-//  1.1000..000 * 2^(63+63-12) to right shift int(N) into the significand
-
-{ .mfi
-      setf.sig  FR_INV_LN2_2TO63 = GR_sig_inv_ln2 // form 1/ln2 * 2^63
-      nop.f 999
-      and GR_Delta_Exp=GR_Delta_Exp,GR_exp_mask  // Get exponent of y-1
-}
-{ .mlx
-      setf.d  FR_RSHF_2TO51 = GR_rshf_2to51    // Form const 1.1000 * 2^(63+51)
-      movl GR_rshf = 0x43e8000000000000        // 1.10000 2^63 for right shift
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_X_lo = FR_Input_Y, FR_logx_lo // logx_lo is Y_lo
-      cmp.eq  p15, p0=  r0, r0                 // Set p15, assume safe
-};;
-
-{ .mmi
-      setf.exp FR_2TOM51 = GR_exp_2tom51 // Form 2^-51 for scaling float_N
-      setf.d  FR_RSHF = GR_rshf          // Form right shift const 1.1000 * 2^63
-      add GR_Table_Ptr1   = 0x50, GR_table_base // Constants_exp_64_P for
-                                                // EXPL_SMALL path
-}
-;;
-
-{ .mmi
-      ldfe FR_P_6 = [GR_Table_Ptr1],16          // Load P_6 for EXPL_SMALL path
-;;
-      ldfe FR_P_5 = [GR_Table_Ptr1],16          // Load P_5 for EXPL_SMALL path
-      nop.i 999
-}
-;;
-
-{ .mfi
-      ldfe FR_P_4 = [GR_Table_Ptr1],16          // Load P_4 for EXPL_SMALL path
-      fma.s1 FR_P_hi = FR_Input_Y, FR_logx_hi,FR_X_lo  // logx_hi ix Y_hi
-      nop.i 999
-}
-;;
-
-{ .mmi
-      ldfe FR_P_3 = [GR_Table_Ptr1],16          // Load P_3 for EXPL_SMALL path
-;;
-      ldfe FR_P_2 = [GR_Table_Ptr1],16          // Load P_2 for EXPL_SMALL path
-      nop.i 999
-}
-;;
-
-// N = X * Inv_log2_by_2^12
-// By adding 1.10...0*2^63 we shift and get round_int(N_signif) in significand.
-// We actually add 1.10...0*2^51 to X * Inv_log2 to do the same thing.
-{ .mfi
-      ldfe FR_P_1 = [GR_Table_Ptr1]             // Load P_1 for EXPL_SMALL path
-      fma.s1 FR_N = FR_X, FR_INV_LN2_2TO63, FR_RSHF_2TO51
-      nop.i 999
-}
-{ .mfb
-      nop.m 999
-      fms.s1 FR_P_lo= FR_Input_Y, FR_logx_hi, FR_P_hi  // P_hi is X
-(p6)  br.cond.spnt POWL_Y_ALMOST_1              // Branch if |y-1| < 2^-50
-}
-;;
-
-{ .mmi
-      getf.exp GR_Expo_X = FR_X
-      add GR_T1_ptr   = 0x0b0, GR_table_base    // Constants_exp_64_T1
-      add GR_T2_ptr   = 0x1b0, GR_table_base    // Constants_exp_64_T2
-}
-;;
-
-// float_N = round_int(N)
-// The signficand of N contains the rounded integer part of X * 2^12/ln2,
-// as a twos complement number in the lower bits (that is, it may be negative).
-// That twos complement number (called N) is put into GR_N_fix.
-
-// Since N is scaled by 2^51, it must be multiplied by 2^-51
-// before the shift constant 1.10000 * 2^63 is subtracted to yield float_N.
-// Thus, float_N contains the floating point version of N
-
-
-{ .mfi
-      add  GR_Table_Ptr   = 0x20, GR_table_base    // Constants_exp_64_A
-      fms.s1 FR_float_N = FR_N, FR_2TOM51, FR_RSHF // Form float_N
-      nop.i 999
-}
-//     Create low part of Y(ln(x)_hi + ln(x)_lo) as P_lo
-{ .mfi
-      mov GR_Big_Pos_Exp = 0x3ffe               // 16382, largest safe exponent
-      fadd.s1 FR_P_lo = FR_P_lo, FR_X_lo
-      mov GR_Big_Neg_Exp = -0x3ffd              // -16381 smallest safe exponent
-};;
-
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_rsq = FR_X, FR_X               // rsq = X*X for EXPL_SMALL path
-      mov GR_vsm_expo = -70                     // Exponent for very small path
-}
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly_lo = FR_P_6, FR_X, FR_P_5  // poly_lo for EXPL_SMALL path
-      add GR_temp = 0x1,r0                      // For tiny signif if small path
-}
-;;
-
-//
-//      If expo_X < -6 goto exp_small
-//
-{ .mmi
-      getf.sig GR_N_fix = FR_N
-      ldfe FR_A_3 = [GR_Table_Ptr],16         // Load A_3
-      and GR_Expo_X = GR_Expo_X, GR_exp_mask  // Get exponent of X
-}
-;;
-
-{ .mfi
-      ldfe FR_A_2 = [GR_Table_Ptr],16         // Load A_2
-      nop.f 999
-      sub GR_Expo_X = GR_Expo_X, GR_exp_bias  // Get true exponent of X
-}
-;;
-
-//
-//     If -6 > Expo_X, set P9 and branch
-//
-{ .mfb
-      cmp.gt  p9, p0  =  -6, GR_Expo_X
-      fnma.s1 FR_r = FR_L_hi, FR_float_N, FR_X // r = X - L_hi * float_N
-(p9)  br.cond.spnt EXPL_SMALL                  // Branch if |X| < 2^-6
-}
-;;
-
-//
-//     If 14 <= Expo_X, set P10
-//
-{ .mib
-      cmp.le  p10, p0 =  14, GR_Expo_X
-      nop.i 999
-(p10) br.cond.spnt EXPL_HUGE                   // Branch if |X| >= 2^14
-}
-;;
-
-//
-//      Load single T1
-//      Load single T2
-//      W_1_p1 = W_1 + 1
-//
-{ .mmi
-      nop.m 999
-      nop.m 999
-      extr.u GR_M1 = GR_N_fix, 6, 6            // Extract index M_1
-}
-;;
-
-//
-//      k = extr.u(N_fix,0,6)
-//
-{ .mmi
-      shladd GR_W1_ptr = GR_M1,3,GR_W1_ptr     // Point to W1
-      shladd GR_T1_ptr = GR_M1,2,GR_T1_ptr     // Point to T1
-      extr.u GR_M2 = GR_N_fix, 0, 6            // Extract index M_2
-}
-;;
-
-// N_fix is only correct up to 50 bits because of our right shift technique.
-// Actually in the normal path we will have restricted K to about 14 bits.
-// Somewhat arbitrarily we extract 32 bits.
-{ .mmi
-      ldfd  FR_W1 = [GR_W1_ptr]
-      shladd GR_W2_ptr = GR_M2,3,GR_W2_ptr     // Point to W2
-      extr GR_k = GR_N_fix, 12, 32             // Extract k
-}
-;;
-
-{ .mfi
-      ldfs  FR_T1 = [GR_T1_ptr]
-      fnma.s1 FR_r = FR_L_lo, FR_float_N, FR_r
-      shladd GR_T2_ptr = GR_M2,2,GR_T2_ptr     // Point to T2
-}
-{ .mfi
-      add GR_exp_bias_p_k = GR_exp_bias, GR_k
-      nop.f 999
-      cmp.gt  p14,p15 = GR_k,GR_Big_Pos_Exp
-}
-;;
-
-//
-//      if k < big_neg_exp, set p14 and Safe=False
-//
-{ .mmi
-      ldfs  FR_T2 = [GR_T2_ptr]
-(p15) cmp.lt p14,p15 = GR_k,GR_Big_Neg_Exp
-      nop.i 999
-}
-;;
-
-{ .mmi
-      setf.exp FR_Scale = GR_exp_bias_p_k
-      ldfd  FR_W2 = [GR_W2_ptr]
-      nop.i 999
-}
-;;
-
-{ .mfi
-      ldfe FR_A_1 = [GR_Table_Ptr],16
-      fadd.s1 FR_r = FR_r, FR_X_cor
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fadd.s1 FR_W_1_p1 = FR_W1, f1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly = FR_r, FR_A_3, FR_A_2
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_rsq = FR_r, FR_r
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_T = FR_T1, FR_T2
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_W = FR_W2, FR_W_1_p1, FR_W1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_TMP1 = FR_Scale, FR_Sgn, f0
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly = FR_r, FR_poly, FR_A_1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_TMP2 = FR_T, f1, f0            // TMP2 = Y_hi = T
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fadd.s1 FR_Wp1 = FR_W, f1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly = FR_rsq, FR_poly,FR_r
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_Tscale = FR_T, FR_TMP1, f0    // Scale * Sgn * T
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fma.s1 FR_Y_lo = FR_Wp1, FR_poly, FR_W
-      nop.i 999
-}
-;;
-
-{ .mfb
-      nop.m 999
-      fmpy.s1 FR_TMP3 = FR_Y_lo, FR_Tscale
-      br.cond.sptk POWL_64_SHARED
-}
-;;
-
-
-EXPL_SMALL:
-// Here if |ylogx| < 2^-6
-//
-//     Begin creating lsb to perturb final result
-//
-{ .mfi
-      setf.sig FR_temp = GR_temp
-      fma.s1 FR_poly_lo = FR_poly_lo, FR_X, FR_P_4
-      cmp.lt  p12, p0 =  GR_Expo_X, GR_vsm_expo   // Test |ylogx| < 2^-70
-}
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly_hi = FR_P_2, FR_X, FR_P_1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_TMP2 = f1, f1
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_TMP1 = FR_Sgn, f1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_r4 = FR_rsq, FR_rsq
-(p12) cmp.eq  p15, p0 =  r0, r0                   // Set safe if |ylogx| < 2^-70
-}
-{ .mfb
-      nop.m 999
-(p12) fmpy.s1 FR_TMP3 = FR_Sgn, FR_X
-(p12) br.cond.spnt POWL_64_SHARED                 // Branch if |ylogx| < 2^-70
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly_lo = FR_poly_lo, FR_X, FR_P_3
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-      fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, FR_X
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s1 FR_Y_lo = FR_poly_lo, FR_r4, FR_poly_hi
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_TMP3 = FR_Y_lo, FR_TMP1      // Add sign info
-      nop.i 999
-}
-;;
-
-//
-//     Toggle on last bit of Y_lo
-//     Set lsb of Y_lo to 1
-//
-{ .mfi
-      nop.m 999
-      for FR_temp = FR_Y_lo,FR_temp
-      nop.i 999
-}
-;;
-
-{ .mfb
-      nop.m 999
-      fmerge.se FR_TMP3 = FR_TMP3,FR_temp
-      br.cond.sptk POWL_64_SHARED
-}
-;;
-
-
-EXPL_HUGE:
-// Here if |ylogx| >= 2^14
-{ .mfi
-      mov GR_temp = 0x0A1DC               // If X < 0, exponent -24100
-      fcmp.gt.s1 p12, p13 =  FR_X, f0     // Test X > 0
-      cmp.eq  p14, p15 =  r0, r0          // Set Safe to false
-}
-;;
-
-{ .mmi
-(p12) mov GR_Mask = 0x15DC0               // If X > 0, exponent +24000
-(p13) mov GR_Mask = 0x0A240               // If X < 0, exponent -24000
-      nop.i 999
-}
-;;
-
-{ .mmf
-      setf.exp FR_TMP2 = GR_Mask          // Form Y_hi = TMP2
-(p13) setf.exp FR_Y_lo = GR_temp          // If X < 0, Y_lo = 2^-24100
-(p12) mov FR_Y_lo = f1                    // IF X > 0, Y_lo = 1.0
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fmpy.s1 FR_TMP1 = FR_TMP2, FR_Sgn   // TMP1 = Y_hi * Sgn
-      nop.i 999
-}
-;;
-
-{ .mfb
-      nop.m 999
-      fmpy.s1 FR_TMP3 = FR_Y_lo,FR_TMP1   // TMP3 = Y_lo * (Y_hi * Sgn)
-      br.cond.sptk POWL_64_SHARED
-}
-;;
-
-POWL_Y_ALMOST_1:
-// Here if delta = |y-1| < 2^-50
-//
-//  x**(1 + delta) = x * e (ln(x)*delta) = x ( 1 + ln(x) * delta)
-//
-// Computation will be safe for 2^-16381 <= x < 2^16383
-
-{ .mfi
-       mov GR_exp_ynear1_oflow = 0xffff + 16383
-       fma.s1 FR_TMP1 = FR_Input_X,FR_Delta,f0
-       and GR_exp_x = GR_exp_mask, GR_signexp_x
-}
-;;
-
-{ .mfi
-       cmp.lt  p15, p14 =  GR_exp_x, GR_exp_ynear1_oflow
-       fma.s1 FR_TMP2 = FR_logx_hi,f1,FR_X_lo
-       mov GR_exp_ynear1_uflow = 0xffff - 16381
-}
-;;
-
-{ .mfb
-(p15)  cmp.ge  p15, p14 =  GR_exp_x, GR_exp_ynear1_uflow
-       fma.s1 FR_TMP3 = FR_Input_X,f1,f0
-       br.cond.sptk POWL_64_SHARED
-};;
-
-POWL_64_SQUARE:
-//
-//      Here if x not zero and y=2.
-//
-//      Setup for multipath code
-//
-{ .mfi
-      mov GR_exp_square_oflow = 0xffff + 8192   // Exponent where x*x overflows
-      fmerge.se FR_TMP1 = FR_Input_X, FR_Input_X
-      and GR_exp_x = GR_exp_mask, GR_signexp_x  // Get exponent of x
-}
-;;
-
-{ .mfi
-      cmp.lt  p15, p14 =  GR_exp_x, GR_exp_square_oflow // Decide safe/unsafe
-      fmerge.se FR_TMP2 = FR_Input_X, FR_Input_X
-      mov GR_exp_square_uflow = 0xffff - 8191   // Exponent where x*x underflows
-}
-;;
-
-{ .mfi
-(p15) cmp.ge  p15, p14 =  GR_exp_x, GR_exp_square_uflow // Decide safe/unsafe
-      fma.s1 FR_TMP3 = f0,f0,f0
-      nop.i 999
-}
-;;
-
-//
-//      This is the shared path that will set overflow and underflow.
-//
-POWL_64_SHARED:
-
-//
-//      Return if no danger of over or underflow.
-//
-{ .mfb
-      nop.m 999
-      fma.s0 FR_Result = FR_TMP1, FR_TMP2, FR_TMP3
-(p15) br.ret.sptk  b0      // Main path return if certain no over/underflow
-}
-;;
-
-//
-//      S0 user supplied status
-//      S2 user supplied status + WRE + TD  (Overflows)
-//      S2 user supplied status + FZ + TD   (Underflows)
-//
-//
-//     If (Safe) is true, then
-//        Compute result using user supplied status field.
-//        No overflow or underflow here, but perhaps inexact.
-//        Return
-//     Else
-//       Determine if overflow or underflow was raised.
-//       Fetch +/- overflow threshold for IEEE double extended
-
-{ .mfi
-      nop.m 999
-      fsetc.s2 0x7F,0x41       // For underflow test, set S2=User+TD+FTZ
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s2 FR_Result_small = FR_TMP1, FR_TMP2, FR_TMP3
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fsetc.s2 0x7F,0x42       // For overflow test, set S2=User+TD+WRE
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fma.s2 FR_Result_big = FR_TMP1, FR_TMP2,FR_TMP3
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fsetc.s2 0x7F,0x40       // Reset S2=User
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fclass.m p11, p0 = FR_Result_small, 0x00F // Test small result unorm/zero
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fcmp.ge.s1 p8, p0 = FR_Result_big , FR_Big // Test >= + oflow threshold
-      nop.i 999
-}
-;;
-
-{ .mfb
-(p11) mov   GR_Parameter_TAG = 19                // Set tag for underflow
-      fcmp.le.s1 p9, p0 = FR_Result_big, FR_NBig // Test <= - oflow threshold
-(p11) br.cond.spnt __libm_error_region           // Branch if pow underflowed
-}
-;;
-
-{ .mfb
-(p8)  mov   GR_Parameter_TAG = 18                // Set tag for overflow
-      nop.f 999
-(p8)  br.cond.spnt __libm_error_region           // Branch if pow +overflow
-}
-;;
-
-{ .mbb
-(p9)  mov   GR_Parameter_TAG = 18                // Set tag for overflow
-(p9)  br.cond.spnt __libm_error_region           // Branch if pow -overflow
-      br.ret.sptk  b0                            // Branch if result really ok
-}
-;;
-
-
-POWL_64_SPECIAL:
-// Here if x or y is NatVal, nan, inf, or zero
-{ .mfi
-      nop.m 999
-      fcmp.eq.s1 p15, p0 =  FR_Input_X, f1  // Test x=+1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fclass.m p8, p0 =  FR_Input_X, 0x143  // Test x natval, snan
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p15) fcmp.eq.unc.s0 p6,p0 = FR_Input_Y, f0 // If x=1, flag invalid if y=SNaN
-      nop.i 999
-}
-{ .mfb
-      nop.m 999
-(p15) fmpy.s0 FR_Result = f1,f1             // If x=1, result=1
-(p15) br.ret.spnt b0                        // Exit if x=1
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fclass.m p6, p0 =  FR_Input_Y, 0x007  // Test y zero
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fclass.m p9, p0 =  FR_Input_Y, 0x143  // Test y natval, snan
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fclass.m p10, p0 =  FR_Input_X, 0x083 // Test x qnan
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-(p8)  fmpy.s0 FR_Result = FR_Input_Y, FR_Input_X // If x=snan, result=qnan
-(p6)  cmp.ne p8,p0 = r0,r0     // Don't exit if x=snan, y=0 ==> result=+1
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p6)  fclass.m.unc p15, p0 =  FR_Input_X,0x007   // Test x=0, y=0
-      nop.i 999
-}
-{ .mfb
-      nop.m 999
-(p9)  fmpy.s0 FR_Result = FR_Input_Y, FR_Input_X // If y=snan, result=qnan
-(p8)  br.ret.spnt b0                             // Exit if x=snan, y not 0,
-                                                 //   result=qnan
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fcmp.eq.s1 p7, p0 =  FR_Input_Y, f1        // Test y +1.0
-      nop.i 999
-}
-{ .mfb
-      nop.m 999
-(p10) fmpy.s0 FR_Result = FR_Input_X, f0         // If x=qnan, result=qnan
-(p9)  br.ret.spnt b0                             // Exit if y=snan, result=qnan
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p6)  fclass.m.unc p8, p0 =  FR_Input_X,0x0C3    // Test x=nan, y=0
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p6)  fcmp.eq.s0 p9,p0 = FR_Input_X, f0          // If y=0, flag if x denormal
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-(p6)  fadd.s0 FR_Result = f1, f0                 // If y=0, result=1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fclass.m p11, p0 =  FR_Input_Y, 0x083      // Test y qnan
-      nop.i 999
-}
-{ .mfb
-(p15) mov GR_Parameter_TAG = 20                  // Error tag for x=0, y=0
-(p7)  fmpy.s0 FR_Result = FR_Input_X,f1          // If y=1, result=x
-(p15) br.cond.spnt __libm_error_region           // Branch if x=0, y=0, result=1
-}
-;;
-
-{ .mfb
-(p8)  mov GR_Parameter_TAG = 23                  // Error tag for x=nan, y=0
-      fclass.m p14, p0 =  FR_Input_Y, 0x023      // Test y inf
-(p8)  br.cond.spnt __libm_error_region           // Branch if x=snan, y=0,
-                                                 //   result=1
-}
-;;
-
-{ .mfb
-      nop.m 999
-      fclass.m p13, p0 =  FR_Input_X, 0x023      // Test x inf
-(p6)  br.ret.spnt b0                             // Exit y=0, x not nan or 0,
-                                                 //   result=1
-}
-;;
-
-{ .mfb
-      nop.m 999
-(p14) fcmp.eq.unc.s1 p0,p14 = FR_Input_X,f0      // Test x not 0, y=inf
-(p7)  br.ret.spnt b0                             // Exit y=1, x not snan,
-                                                 //   result=x
-}
-;;
-
-{ .mfb
-      nop.m 999
-(p10) fmpy.s0 FR_Result = FR_Input_Y,FR_Input_X  // If x=qnan, y not snan,
-                                                 //   result=qnan
-(p10) br.ret.spnt b0                             // Exit x=qnan, y not snan,
-                                                 //   result=qnan
-}
-;;
-
-{ .mfb
-      nop.m 999
-(p11) fmpy.s0 FR_Result = FR_Input_Y,FR_Input_X  // If y=qnan, x not nan or 1,
-                                                 //   result=qnan
-(p11) br.ret.spnt b0                             // Exit y=qnan, x not nan or 1,
-                                                 //   result=qnan
-}
-;;
-
-{ .mbb
-      nop.m 999
-(p14) br.cond.spnt POWL_64_Y_IS_INF           // Branch if y=inf, x not 1 or nan
-(p13) br.cond.spnt POWL_64_X_IS_INF           // Branch if x=inf, y not 1 or nan
-}
-;;
-
-
-POWL_64_X_IS_ZERO:
-// Here if x=0, y not nan or 1 or inf or 0
-
-// There is logic starting here to determine if y is an integer when x = 0.
-// If 0 < |y| < 1 then clearly y is not an integer.
-// If |y| > 1, then the significand of y is shifted left by the size of
-//    the exponent of y.  This preserves the lsb of the integer part + the
-//    fractional bits.  The lsb of the integer can be tested to determine if
-//    the integer is even or odd.  The fractional bits can be tested.  If zero,
-//    then y is an integer.
-//
-{ .mfi
-      and GR_exp_y = GR_exp_mask,GR_signexp_y   // Get biased exponent of y
-      nop.f 999
-      and GR_y_sign = GR_sign_mask,GR_signexp_y // Get sign of y
-}
-;;
-
-//
-//     Maybe y is < 1 already, so
-//     can never be an integer.
-//
-{ .mfi
-      cmp.lt  p9, p8 = GR_exp_y,GR_exp_bias     // Test 0 < |y| < 1
-      nop.f 999
-      sub GR_exp_y = GR_exp_y,GR_exp_bias       // Get true exponent of y
-}
-;;
-
-//
-//     Shift significand of y looking for nonzero bits
-//     For y > 1, shift signif_y exp_y bits to the left
-//     For y < 1, turn on 4 low order bits of significand of y
-//     so that the fraction will always be non-zero
-//
-{ .mmi
-(p9)  or  GR_exp_y=  0xF,GR_signif_y            // Force nonzero fraction if y<1
-;;
-      nop.m 999
-(p8)  shl GR_exp_y=  GR_signif_y,GR_exp_y       // Get lsb of int + fraction
-                                                // Wait 4 cycles to use result
-}
-;;
-
-{ .mmi
-      nop.m 999
-;;
-      nop.m 999
-      nop.i 999
-}
-;;
-
-{ .mmi
-      nop.m 999
-;;
-      nop.m 999
-      shl GR_fraction_y=  GR_exp_y,1            // Shift left 1 to get fraction
-}
-;;
-
-//
-//     Integer part of y  shifted off.
-//     Get y's low even or odd bit - y might not be an int.
-//
-{ .mii
-      cmp.eq  p13,p0  =  GR_fraction_y, r0      // Test for y integer
-      cmp.eq  p8,p0 =  GR_y_sign, r0            // Test for y > 0
-;;
-(p13) tbit.nz.unc p13,p0 = GR_exp_y, 63         // Test if y an odd integer
-}
-;;
-
-{ .mfi
-(p13) cmp.eq.unc p13,p14 =  GR_y_sign, r0   // Test y pos odd integer
-(p8)  fcmp.eq.s0 p12,p0 = FR_Input_Y, f0    // If x=0 and y>0 flag if y denormal
-      nop.i 999
-}
-;;
-
-//
-//     Return +/-0 when x=+/-0 and y is positive odd integer
-//
-{ .mfb
-      nop.m 999
-(p13) mov FR_Result = FR_Input_X            // If x=0,  y pos odd int, result=x
-(p13) br.ret.spnt b0                        // Exit x=0, y pos odd int, result=x
-}
-;;
-
-//
-//     Return +/-inf when x=+/-0 and y is negative odd int
-//
-{ .mfb
-(p14) mov GR_Parameter_TAG = 21
-(p14) frcpa.s0 FR_Result, p0 = f1, FR_Input_X  // Result +-inf, set Z flag
-(p14) br.cond.spnt __libm_error_region
-}
-;;
-
-//
-//     Return +0 when x=+/-0 and y positive and not an odd integer
-//
-{ .mfb
-      nop.m 999
-(p8)  mov FR_Result = f0      // If x=0, y>0 and not odd integer, result=+0
-(p8)  br.ret.sptk b0          // Exit x=0, y>0 and not odd integer, result=+0
-}
-;;
-
-//
-//     Return +inf when x=+/-0 and y is negative and not odd int
-//
-{ .mfb
-      mov GR_Parameter_TAG = 21
-      frcpa.s0 FR_Result, p10 = f1,f0   // Result +inf, raise Z flag
-      br.cond.sptk __libm_error_region
-}
-;;
-
-
-POWL_64_X_IS_INF:
-//
-// Here if x=inf, y not 1 or nan
-//
-{ .mfi
-      and GR_exp_y = GR_exp_mask,GR_signexp_y   // Get biased exponent y
-      fclass.m p13, p0 =  FR_Input_X,0x022      // Test x=-inf
-      nop.i 999
-}
-;;
-
-{ .mfi
-      and GR_y_sign = GR_sign_mask,GR_signexp_y // Get sign of y
-      fcmp.eq.s0 p9,p0 = FR_Input_Y, f0         // Dummy to set flag if y denorm
-      nop.i 999
-}
-;;
-
-//
-//     Maybe y is < 1 already, so
-//     isn't an int.
-//
-{ .mfi
-(p13) cmp.lt.unc  p9, p8 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1 if x=-inf
-      fclass.m p11, p0 =  FR_Input_X,0x021      // Test x=+inf
-      sub GR_exp_y = GR_exp_y,GR_exp_bias       // Get true exponent y
-}
-;;
-
-//
-//     Shift significand of y looking for nonzero bits
-//     For y > 1, shift signif_y exp_y bits to the left
-//     For y < 1, turn on 4 low order bits of significand of y
-//     so that the fraction will always be non-zero
-//
-{ .mmi
-(p9)  or  GR_exp_y=  0xF,GR_signif_y          // Force nonzero fraction if y<1
-;;
-(p11) cmp.eq.unc  p14,p12 = GR_y_sign, r0     // Test x=+inf, y>0
-(p8)  shl GR_exp_y=  GR_signif_y,GR_exp_y     // Get lsb of int + fraction
-                                              // Wait 4 cycles to use result
-}
-;;
-
-//
-//     Return +inf for x=+inf, y > 0
-//     Return +0   for x=+inf, y < 0
-//
-{ .mfi
-      nop.m 999
-(p12) mov FR_Result = f0                      // If x=+inf, y<0, result=+0
-      nop.i 999
-}
-{ .mfb
-      nop.m 999
-(p14) fma.s0 FR_Result = FR_Input_X,f1,f0     // If x=+inf, y>0, result=+inf
-(p11) br.ret.sptk b0                          // Exit x=+inf
-}
-;;
-
-//
-// Here only if x=-inf.  Wait until can use result of shl...
-//
-{ .mmi
-      nop.m 999
-;;
-      nop.m 999
-      nop.i 999
-}
-;;
-
-{ .mfi
-      cmp.eq  p8,p9 = GR_y_sign, r0           // Test y pos
-      nop.f 999
-      shl GR_fraction_y = GR_exp_y,1          // Shift left 1 to get fraction
-}
-;;
-
-{ .mmi
-      cmp.eq  p13,p0 = GR_fraction_y, r0      // Test y integer
-;;
-      nop.m 999
-(p13) tbit.nz.unc  p13,p0 = GR_exp_y, 63      // Test y odd integer
-}
-;;
-
-//
-//     Is y even or odd?
-//
-{ .mii
-(p13) cmp.eq.unc  p14,p10 = GR_y_sign, r0     // Test x=-inf, y pos odd int
-(p13) cmp.ne.and  p8,p9 = r0,r0               // If y odd int, turn off p8,p9
-      nop.i 999
-}
-;;
-
-//
-//     Return -0   for x = -inf and y < 0 and odd int.
-//     Return -Inf for x = -inf and y > 0 and odd int.
-//
-{ .mfi
-      nop.m 999
-(p10) fmerge.ns FR_Result = f0, f0      // If x=-inf, y neg odd int, result=-0
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-(p14) fmpy.s0 FR_Result = FR_Input_X,f1 // If x=-inf, y pos odd int, result=-inf
-      nop.i 999
-}
-;;
-
-//
-//     Return Inf for x = -inf and y > 0 not an odd int.
-//     Return +0  for x = -inf and y < 0 not an odd int.
-//
-.pred.rel "mutex",p8,p9
-{ .mfi
-      nop.m 999
-(p8)  fmerge.ns FR_Result = FR_Input_X, FR_Input_X // If x=-inf, y>0 not odd int
-                                                   //   result=+inf
-      nop.i 999
-}
-{ .mfb
-      nop.m 999
-(p9)  fmpy.s0 FR_Result = f0,f0                    // If x=-inf, y<0 not odd int
-                                                   //   result=+0
-      br.ret.sptk b0                               // Exit for x=-inf
-}
-;;
-
-
-POWL_64_Y_IS_INF:
-// Here if y=inf, x not 1 or nan
-//
-//     For y = +Inf and |x| < 1  returns 0
-//     For y = +Inf and |x| > 1  returns Inf
-//     For y = -Inf and |x| < 1  returns Inf
-//     For y = -Inf and |x| > 1  returns 0
-//     For y =  Inf and |x| = 1  returns 1
-//
-{ .mfi
-      nop.m 999
-      fclass.m p8, p0 =  FR_Input_Y, 0x021    // Test y=+inf
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fclass.m p9, p0 =  FR_Input_Y, 0x022    // Test y=-inf
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fabs FR_X = FR_Input_X                  // Form |x|
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fcmp.eq.s0 p10,p0 = FR_Input_X, f0      // flag if x denormal
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p8)  fcmp.lt.unc.s1 p6, p0  =  FR_X, f1      // Test y=+inf, |x|<1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p8)  fcmp.gt.unc.s1 p7, p0  =  FR_X, f1      // Test y=+inf, |x|>1
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p9)  fcmp.lt.unc.s1 p12, p0 =  FR_X, f1      // Test y=-inf, |x|<1
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-(p6)  fmpy.s0 FR_Result = f0,f0               // If y=+inf, |x|<1, result=+0
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p9)  fcmp.gt.unc.s1 p13, p0 =  FR_X, f1      // Test y=-inf, |x|>1
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-(p7)  fmpy.s0 FR_Result = FR_Input_Y, f1      // If y=+inf, |x|>1, result=+inf
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-      fcmp.eq.s1 p14, p0 =  FR_X, f1          // Test y=inf, |x|=1
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-(p12) fnma.s0 FR_Result = FR_Input_Y, f1, f0  // If y=-inf, |x|<1, result=+inf
-      nop.i 999
-}
-;;
-
-{ .mfi
-      nop.m 999
-(p13) mov FR_Result = f0                      // If y=-inf, |x|>1, result=+0
-      nop.i 999
-}
-;;
-
-{ .mfb
-      nop.m 999
-(p14) fmpy.s0 FR_Result = f1,f1               // If y=inf, |x|=1, result=+1
-      br.ret.sptk b0                          // Common return for y=inf
-}
-;;
-
-
-// Here if x or y denorm/unorm
-POWL_DENORM:
-{ .mmi
-      getf.sig GR_signif_Z = FR_norm_X   // Get significand of x
-;;
-      getf.exp GR_signexp_y = FR_norm_Y  // Get sign and exp of y
-      nop.i 999
-}
-;;
-
-{ .mfi
-      getf.sig GR_signif_y = FR_norm_Y   // Get significand of y
-      nop.f 999
-      nop.i 999
-}
-;;
-
-{ .mib
-      getf.exp GR_signexp_x = FR_norm_X  // Get sign and exp of x
-      extr.u GR_Index1 = GR_signif_Z, 59, 4  // Extract upper 4 signif bits of x
-      br.cond.sptk  POWL_COMMON          // Branch back to main path
-}
-;;
-
-
-POWL_64_UNSUPPORT:
-//
-//     Raise exceptions for specific
-//     values - pseudo NaN and
-//     infinities.
-//     Return NaN and raise invalid
-//
-{ .mfb
-      nop.m 999
-      fmpy.s0 FR_Result = FR_Input_X,f0
-      br.ret.sptk b0
-}
-;;
-
-POWL_64_XNEG:
-//
-//     Raise invalid for x < 0  and
-//     y not an integer
-//
-{ .mfi
-      nop.m 999
-      frcpa.s0 FR_Result, p8 =  f0, f0
-      mov GR_Parameter_TAG = 22
-}
-{ .mib
-      nop.m 999
-      nop.i 999
-      br.cond.sptk __libm_error_region
-}
-;;
-
-POWL_64_SQRT:
-{ .mfi
-      nop.m 999
-      frsqrta.s0 FR_Result,p10 = FR_save_Input_X
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fma.s1   f62=FR_Half,FR_save_Input_X,f0
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fma.s1   f63=FR_Result,FR_Result,f0
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fnma.s1  f32=f63,f62,FR_Half
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fma.s1   f33=f32,FR_Result,FR_Result
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fma.s1   f34=f33,f62,f0
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fnma.s1  f35=f34,f33,FR_Half
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fma.s1   f63=f35,f33,f33
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fma.s1   f32=FR_save_Input_X,f63,f0
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-(p10) fma.s1   FR_Result=f63,f62,f0
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fma.s1   f33=f11,f63,f0
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fnma.s1  f34=f32,f32,FR_save_Input_X
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-(p10) fnma.s1  f35=FR_Result,f63,FR_Half
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fma.s1   f62=f33,f34,f32
-      nop.i 999
-}
-{ .mfi
-      nop.m 999
-(p10) fma.s1   f63=f33,f35,f33
-      nop.i 999 ;;
-}
-{ .mfi
-      nop.m 999
-(p10) fnma.s1  f32=f62,f62,FR_save_Input_X
-      nop.i 999 ;;
-}
-{ .mfb
-      nop.m 999
-(p10) fma.s0 FR_Result=f32,f63,f62
-      br.ret.sptk   b0                // Exit for x > 0, y = 0.5
-}
-;;
-
-GLOBAL_LIBM_END(powl)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
-        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
-        nop.f 0
-.save   ar.pfs,GR_SAVE_PFS
-        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
-}
-{ .mfi
-.fframe 64
-        add sp=-64,sp                           // Create new stack
-        nop.f 0
-        mov GR_SAVE_GP=gp                       // Save gp
-};;
-{ .mmi
-        stfe [GR_Parameter_Y] = FR_Input_Y,16   // Save Parameter 2 on stack
-        add GR_Parameter_X = 16,sp              // Parameter 1 address
-.save   b0, GR_SAVE_B0
-        mov GR_SAVE_B0=b0                       // Save b0
-};;
-.body
-{ .mib
-        stfe [GR_Parameter_X] = FR_save_Input_X // Store Parameter 1 on stack
-        add   GR_Parameter_RESULT = 0,GR_Parameter_Y
-        nop.b 0                                 // Parameter 3 address
-}
-{ .mib
-        stfe [GR_Parameter_Y] = FR_Result       // Store Parameter 3 on stack
-        add   GR_Parameter_Y = -16,GR_Parameter_Y
-        br.call.sptk b0=__libm_error_support#   // Call error handling function
-};;
-{ .mmi
-        add   GR_Parameter_RESULT = 48,sp
-        nop.m 0
-        nop.i 0
-};;
-{ .mmi
-        ldfe  f8 = [GR_Parameter_RESULT]        // Get return result off stack
-.restore sp
-        add   sp = 64,sp                        // Restore stack pointer
-        mov   b0 = GR_SAVE_B0                   // Restore return address
-};;
-{ .mib
-        mov   gp = GR_SAVE_GP                  // Restore gp
-        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
-        br.ret.sptk     b0                     // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region#)
-.type   __libm_error_support#,@function
-.global __libm_error_support#