about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_atanh.S
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>2004-12-22 20:10:10 +0000
committerUlrich Drepper <drepper@redhat.com>2004-12-22 20:10:10 +0000
commita334319f6530564d22e775935d9c91663623a1b4 (patch)
treeb5877475619e4c938e98757d518bb1e9cbead751 /sysdeps/ia64/fpu/e_atanh.S
parent0ecb606cb6cf65de1d9fc8a919bceb4be476c602 (diff)
downloadglibc-a334319f6530564d22e775935d9c91663623a1b4.tar.gz
glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.xz
glibc-a334319f6530564d22e775935d9c91663623a1b4.zip
(CFLAGS-tst-align.c): Add -mpreferred-stack-boundary=4.
Diffstat (limited to 'sysdeps/ia64/fpu/e_atanh.S')
-rw-r--r--sysdeps/ia64/fpu/e_atanh.S1071
1 files changed, 0 insertions, 1071 deletions
diff --git a/sysdeps/ia64/fpu/e_atanh.S b/sysdeps/ia64/fpu/e_atanh.S
deleted file mode 100644
index 4ae5ee6926..0000000000
--- a/sysdeps/ia64/fpu/e_atanh.S
+++ /dev/null
@@ -1,1071 +0,0 @@
-.file "atanh.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// ==============================================================
-// History
-// ==============================================================
-// 05/03/01  Initial version
-// 05/20/02  Cleaned up namespace and sf0 syntax
-// 02/06/03  Reordered header: .section, .global, .proc, .align
-// 05/26/03  Improved performance, fixed to handle unorms
-// 03/31/05  Reformatted delimiters between data tables
-//
-// API
-// ==============================================================
-// double atanh(double)
-//
-// Overview of operation
-// ==============================================================
-//
-// There are 7 paths:
-// 1. x = +/-0.0
-//    Return atanh(x) = +/-0.0
-//
-// 2. 0.0 < |x| < 1/4
-//    Return atanh(x) = Po2l(x),
-//    where Po2l(x) = (((((((((C9*x^2 + C8)*x^2 + C7)*x^2 + C6)*x^2 +
-//          C5)*x^2 + C4)*x^2 + C3)*x^2 + C2)*x^2 + C1)* x^2 + C0)*x^3 + x
-// 3. 1/4 <= |x| < 1
-//    Return atanh(x) = sign(x) * log((1 + |x|)/(1 - |x|))
-//    To compute (1 + |x|)/(1 - |x|) modified Newton Raphson method is used
-//    (3 iterations)
-//    Algorithm description for log function see below.
-//
-// 4. |x| = 1
-//    Return atanh(x) = sign(x) * +INF
-//
-// 5. 1 < |x| <= +INF
-//    Return atanh(x) = QNaN
-//
-// 6. x = [S,Q]NaN
-//    Return atanh(x) = QNaN
-//
-// 7. x = denormal
-//    Return atanh(x) = x
-//
-//==============================================================
-// Algorithm Description for log(x) function
-// Below we are using the fact that inequality x - 1.0 > 2^(-6) is always true
-// for this atanh implementation
-//
-// Consider  x = 2^N 1.f1 f2 f3 f4...f63
-// Log(x) = log(x * frcpa(x) / frcpa(x))
-//        = log(x * frcpa(x)) + log(1/frcpa(x))
-//        = log(x * frcpa(x)) - log(frcpa(x))
-//
-// frcpa(x)       = 2^-N * frcpa(1.f1 f2 ... f63)
-//
-// -log(frcpa(x)) = -log(C)
-//                = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-//                = N*log2 - log(frcpa(1.f1 f2 ... f63))
-//
-//
-// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
-//
-// Log(x) = N*log2 + log(1./frcpa(1.f1 f2 ... f63)) + log(x * frcpa(x))
-// Log(x) = N*log2 + T                              + log(frcpa(x) x)
-//
-// Log(x) = N*log2 + T                              + log(C * x)
-//
-// C * x = 1 + r
-//
-// Log(x) = N*log2 + T + log(1 + r)
-// Log(x) = N*log2 + T + Series(r - r^2/2 + r^3/3 - r^4/4 + ...)
-//
-// 1.f1 f2 ... f8 has 256 entries.
-// They are 1 + k/2^8, k = 0 ... 255
-// These 256 values are the table entries.
-//
-// Implementation
-//==============================================================
-// C = frcpa(x)
-// r = C * x - 1
-//
-// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4 + P4*r^5 + P5*r^6
-//
-// x = f * 2*N where f is 1.f_1f_2f_3...f_63
-// Nfloat = float(n)  where n is the true unbiased exponent
-// pre-index = f_1f_2....f_8
-// index = pre_index * 16
-// get the dxt table entry at index + offset = T
-//
-// result = (T + Nfloat * log(2)) + rseries
-//
-// The T table is calculated as follows
-// Form x_k = 1 + k/2^8 where k goes from 0... 255
-//      y_k = frcpa(x_k)
-//      log(1/y_k)  in quad and round to double-extended
-//
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f32 -> f77
-
-// General registers used:
-// r14 -> r27, r33 -> r39
-
-// Predicate registers used:
-// p6 -> p14
-
-// p10, p11      to indicate is argument positive or negative
-// p12           to filter out case when x = [Q,S]NaN or +/-0
-// p13           to filter out case when x = denormal
-// p6, p7        to filter out case when |x| >= 1
-// p8            to filter out case when |x| < 1/4
-
-// Assembly macros
-//==============================================================
-Data2Ptr              = r14
-Data3Ptr              = r15
-RcpTablePtr           = r16
-rExpbMask             = r17
-rBias                 = r18
-rNearZeroBound        = r19
-rArgSExpb             = r20
-rArgExpb              = r21
-rSExpb                = r22
-rExpb                 = r23
-rSig                  = r24
-rN                    = r25
-rInd                  = r26
-DataPtr               = r27
-
-GR_SAVE_B0            = r33
-GR_SAVE_GP            = r34
-GR_SAVE_PFS           = r35
-
-GR_Parameter_X        = r36
-GR_Parameter_Y        = r37
-GR_Parameter_RESULT   = r38
-atanh_GR_tag          = r39
-
-//==============================================================
-fAbsX                 = f32
-fOneMx                = f33
-fOnePx                = f34
-fY                    = f35
-fR                    = f36
-fR2                   = f37
-fR3                   = f38
-fRcp                  = f39
-fY4Rcp                = f40
-fRcp0                 = f41
-fRcp0n                = f42
-fRcp1                 = f43
-fRcp2                 = f44
-fRcp3                 = f45
-fN4Cvt                = f46
-fN                    = f47
-fY2                   = f48
-fLog2                 = f49
-fLogT                 = f50
-fLogT_N               = f51
-fX2                   = f52
-fX3                   = f53
-fX4                   = f54
-fX8                   = f55
-fP0                   = f56
-fP5                   = f57
-fP4                   = f58
-fP3                   = f59
-fP2                   = f60
-fP1                   = f61
-fNormX                = f62
-fC9                   = f63
-fC8                   = f64
-fC7                   = f65
-fC6                   = f66
-fC5                   = f67
-fC4                   = f68
-fC3                   = f69
-fC2                   = f70
-fC1                   = f71
-fC0                   = f72
-fP98                  = f73
-fP76                  = f74
-fP54                  = f75
-fP32                  = f76
-fP10                  = f77
-
-// Data tables
-//==============================================================
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(atanh_data)
-data8 0xBFC5555DA7212371              //   P5
-data8 0x3FC999A19EEF5826              //   P4
-data8 0xBFCFFFFFFFFEF009              //   P3
-data8 0x3FD555555554ECB2              //   P2
-data8 0xBFE0000000000000              //   P1 = -0.5
-data8 0x0000000000000000              //   pad
-data8 0xb17217f7d1cf79ac , 0x00003ffd //   0.5*log(2)
-data8 0x0000000000000000 , 0x00000000 //   pad to eliminate bank conflicts
-LOCAL_OBJECT_END(atanh_data)
-
-LOCAL_OBJECT_START(atanh_data_2)
-data8 0x8649FB89D3AD51FB , 0x00003FFB //   C9
-data8 0xCC10AABEF160077A , 0x00003FFA //   C8
-data8 0xF1EDB99AC0819CE2 , 0x00003FFA //   C7
-data8 0x8881E53A809AD24D , 0x00003FFB //   C6
-data8 0x9D8A116EF212F271 , 0x00003FFB //   C5
-data8 0xBA2E8A6D1D756453 , 0x00003FFB //   C4
-data8 0xE38E38E7A0945692 , 0x00003FFB //   C3
-data8 0x924924924536891A , 0x00003FFC //   C2
-data8 0xCCCCCCCCCCD08D51 , 0x00003FFC //   C1
-data8 0xAAAAAAAAAAAAAA0C , 0x00003FFD //   C0
-LOCAL_OBJECT_END(atanh_data_2)
-
-
-LOCAL_OBJECT_START(atanh_data_3)
-data8 0x80200aaeac44ef38 , 0x00003ff5 //   log(1/frcpa(1+0/2^-8))/2
-//
-data8 0xc09090a2c35aa070 , 0x00003ff6 //   log(1/frcpa(1+1/2^-8))/2
-data8 0xa0c94fcb41977c75 , 0x00003ff7 //   log(1/frcpa(1+2/2^-8))/2
-data8 0xe18b9c263af83301 , 0x00003ff7 //   log(1/frcpa(1+3/2^-8))/2
-data8 0x8d35c8d6399c30ea , 0x00003ff8 //   log(1/frcpa(1+4/2^-8))/2
-data8 0xadd4d2ecd601cbb8 , 0x00003ff8 //   log(1/frcpa(1+5/2^-8))/2
-//
-data8 0xce95403a192f9f01 , 0x00003ff8 //   log(1/frcpa(1+6/2^-8))/2
-data8 0xeb59392cbcc01096 , 0x00003ff8 //   log(1/frcpa(1+7/2^-8))/2
-data8 0x862c7d0cefd54c5d , 0x00003ff9 //   log(1/frcpa(1+8/2^-8))/2
-data8 0x94aa63c65e70d499 , 0x00003ff9 //   log(1/frcpa(1+9/2^-8))/2
-data8 0xa54a696d4b62b382 , 0x00003ff9 //   log(1/frcpa(1+10/2^-8))/2
-//
-data8 0xb3e4a796a5dac208 , 0x00003ff9 //   log(1/frcpa(1+11/2^-8))/2
-data8 0xc28c45b1878340a9 , 0x00003ff9 //   log(1/frcpa(1+12/2^-8))/2
-data8 0xd35c55f39d7a6235 , 0x00003ff9 //   log(1/frcpa(1+13/2^-8))/2
-data8 0xe220f037b954f1f5 , 0x00003ff9 //   log(1/frcpa(1+14/2^-8))/2
-data8 0xf0f3389b036834f3 , 0x00003ff9 //   log(1/frcpa(1+15/2^-8))/2
-//
-data8 0xffd3488d5c980465 , 0x00003ff9 //   log(1/frcpa(1+16/2^-8))/2
-data8 0x87609ce2ed300490 , 0x00003ffa //   log(1/frcpa(1+17/2^-8))/2
-data8 0x8ede9321e8c85927 , 0x00003ffa //   log(1/frcpa(1+18/2^-8))/2
-data8 0x96639427f2f8e2f4 , 0x00003ffa //   log(1/frcpa(1+19/2^-8))/2
-data8 0x9defad3e8f73217b , 0x00003ffa //   log(1/frcpa(1+20/2^-8))/2
-//
-data8 0xa582ebd50097029c , 0x00003ffa //   log(1/frcpa(1+21/2^-8))/2
-data8 0xac06dbe75ab80fee , 0x00003ffa //   log(1/frcpa(1+22/2^-8))/2
-data8 0xb3a78449b2d3ccca , 0x00003ffa //   log(1/frcpa(1+23/2^-8))/2
-data8 0xbb4f79635ab46bb2 , 0x00003ffa //   log(1/frcpa(1+24/2^-8))/2
-data8 0xc2fec93a83523f3f , 0x00003ffa //   log(1/frcpa(1+25/2^-8))/2
-//
-data8 0xc99af2eaca4c4571 , 0x00003ffa //   log(1/frcpa(1+26/2^-8))/2
-data8 0xd1581106472fa653 , 0x00003ffa //   log(1/frcpa(1+27/2^-8))/2
-data8 0xd8002560d4355f2e , 0x00003ffa //   log(1/frcpa(1+28/2^-8))/2
-data8 0xdfcb43b4fe508632 , 0x00003ffa //   log(1/frcpa(1+29/2^-8))/2
-data8 0xe67f6dff709d4119 , 0x00003ffa //   log(1/frcpa(1+30/2^-8))/2
-//
-data8 0xed393b1c22351280 , 0x00003ffa //   log(1/frcpa(1+31/2^-8))/2
-data8 0xf5192bff087bcc35 , 0x00003ffa //   log(1/frcpa(1+32/2^-8))/2
-data8 0xfbdf4ff6dfef2fa3 , 0x00003ffa //   log(1/frcpa(1+33/2^-8))/2
-data8 0x81559a97f92f9cc7 , 0x00003ffb //   log(1/frcpa(1+34/2^-8))/2
-data8 0x84be72bce90266e8 , 0x00003ffb //   log(1/frcpa(1+35/2^-8))/2
-//
-data8 0x88bc74113f23def2 , 0x00003ffb //   log(1/frcpa(1+36/2^-8))/2
-data8 0x8c2ba3edf6799d11 , 0x00003ffb //   log(1/frcpa(1+37/2^-8))/2
-data8 0x8f9dc92f92ea08b1 , 0x00003ffb //   log(1/frcpa(1+38/2^-8))/2
-data8 0x9312e8f36efab5a7 , 0x00003ffb //   log(1/frcpa(1+39/2^-8))/2
-data8 0x968b08643409ceb6 , 0x00003ffb //   log(1/frcpa(1+40/2^-8))/2
-//
-data8 0x9a062cba08a1708c , 0x00003ffb //   log(1/frcpa(1+41/2^-8))/2
-data8 0x9d845b3abf95485c , 0x00003ffb //   log(1/frcpa(1+42/2^-8))/2
-data8 0xa06fd841bc001bb4 , 0x00003ffb //   log(1/frcpa(1+43/2^-8))/2
-data8 0xa3f3a74652fbe0db , 0x00003ffb //   log(1/frcpa(1+44/2^-8))/2
-data8 0xa77a8fb2336f20f5 , 0x00003ffb //   log(1/frcpa(1+45/2^-8))/2
-//
-data8 0xab0497015d28b0a0 , 0x00003ffb //   log(1/frcpa(1+46/2^-8))/2
-data8 0xae91c2be6ba6a615 , 0x00003ffb //   log(1/frcpa(1+47/2^-8))/2
-data8 0xb189d1b99aebb20b , 0x00003ffb //   log(1/frcpa(1+48/2^-8))/2
-data8 0xb51cced5de9c1b2c , 0x00003ffb //   log(1/frcpa(1+49/2^-8))/2
-data8 0xb819bee9e720d42f , 0x00003ffb //   log(1/frcpa(1+50/2^-8))/2
-//
-data8 0xbbb2a0947b093a5d , 0x00003ffb //   log(1/frcpa(1+51/2^-8))/2
-data8 0xbf4ec1505811684a , 0x00003ffb //   log(1/frcpa(1+52/2^-8))/2
-data8 0xc2535bacfa8975ff , 0x00003ffb //   log(1/frcpa(1+53/2^-8))/2
-data8 0xc55a3eafad187eb8 , 0x00003ffb //   log(1/frcpa(1+54/2^-8))/2
-data8 0xc8ff2484b2c0da74 , 0x00003ffb //   log(1/frcpa(1+55/2^-8))/2
-//
-data8 0xcc0b1a008d53ab76 , 0x00003ffb //   log(1/frcpa(1+56/2^-8))/2
-data8 0xcfb6203844b3209b , 0x00003ffb //   log(1/frcpa(1+57/2^-8))/2
-data8 0xd2c73949a47a19f5 , 0x00003ffb //   log(1/frcpa(1+58/2^-8))/2
-data8 0xd5daae18b49d6695 , 0x00003ffb //   log(1/frcpa(1+59/2^-8))/2
-data8 0xd8f08248cf7e8019 , 0x00003ffb //   log(1/frcpa(1+60/2^-8))/2
-//
-data8 0xdca7749f1b3e540e , 0x00003ffb //   log(1/frcpa(1+61/2^-8))/2
-data8 0xdfc28e033aaaf7c7 , 0x00003ffb //   log(1/frcpa(1+62/2^-8))/2
-data8 0xe2e012a5f91d2f55 , 0x00003ffb //   log(1/frcpa(1+63/2^-8))/2
-data8 0xe600064ed9e292a8 , 0x00003ffb //   log(1/frcpa(1+64/2^-8))/2
-data8 0xe9226cce42b39f60 , 0x00003ffb //   log(1/frcpa(1+65/2^-8))/2
-//
-data8 0xec4749fd97a28360 , 0x00003ffb //   log(1/frcpa(1+66/2^-8))/2
-data8 0xef6ea1bf57780495 , 0x00003ffb //   log(1/frcpa(1+67/2^-8))/2
-data8 0xf29877ff38809091 , 0x00003ffb //   log(1/frcpa(1+68/2^-8))/2
-data8 0xf5c4d0b245cb89be , 0x00003ffb //   log(1/frcpa(1+69/2^-8))/2
-data8 0xf8f3afd6fcdef3aa , 0x00003ffb //   log(1/frcpa(1+70/2^-8))/2
-//
-data8 0xfc2519756be1abc7 , 0x00003ffb //   log(1/frcpa(1+71/2^-8))/2
-data8 0xff59119f503e6832 , 0x00003ffb //   log(1/frcpa(1+72/2^-8))/2
-data8 0x8147ce381ae0e146 , 0x00003ffc //   log(1/frcpa(1+73/2^-8))/2
-data8 0x82e45f06cb1ad0f2 , 0x00003ffc //   log(1/frcpa(1+74/2^-8))/2
-data8 0x842f5c7c573cbaa2 , 0x00003ffc //   log(1/frcpa(1+75/2^-8))/2
-//
-data8 0x85ce471968c8893a , 0x00003ffc //   log(1/frcpa(1+76/2^-8))/2
-data8 0x876e8305bc04066d , 0x00003ffc //   log(1/frcpa(1+77/2^-8))/2
-data8 0x891012678031fbb3 , 0x00003ffc //   log(1/frcpa(1+78/2^-8))/2
-data8 0x8a5f1493d766a05f , 0x00003ffc //   log(1/frcpa(1+79/2^-8))/2
-data8 0x8c030c778c56fa00 , 0x00003ffc //   log(1/frcpa(1+80/2^-8))/2
-//
-data8 0x8da85df17e31d9ae , 0x00003ffc //   log(1/frcpa(1+81/2^-8))/2
-data8 0x8efa663e7921687e , 0x00003ffc //   log(1/frcpa(1+82/2^-8))/2
-data8 0x90a22b6875c6a1f8 , 0x00003ffc //   log(1/frcpa(1+83/2^-8))/2
-data8 0x91f62cc8f5d24837 , 0x00003ffc //   log(1/frcpa(1+84/2^-8))/2
-data8 0x93a06cfc3857d980 , 0x00003ffc //   log(1/frcpa(1+85/2^-8))/2
-//
-data8 0x94f66d5e6fd01ced , 0x00003ffc //   log(1/frcpa(1+86/2^-8))/2
-data8 0x96a330156e6772f2 , 0x00003ffc //   log(1/frcpa(1+87/2^-8))/2
-data8 0x97fb3582754ea25b , 0x00003ffc //   log(1/frcpa(1+88/2^-8))/2
-data8 0x99aa8259aad1bbf2 , 0x00003ffc //   log(1/frcpa(1+89/2^-8))/2
-data8 0x9b0492f6227ae4a8 , 0x00003ffc //   log(1/frcpa(1+90/2^-8))/2
-//
-data8 0x9c5f8e199bf3a7a5 , 0x00003ffc //   log(1/frcpa(1+91/2^-8))/2
-data8 0x9e1293b9998c1daa , 0x00003ffc //   log(1/frcpa(1+92/2^-8))/2
-data8 0x9f6fa31e0b41f308 , 0x00003ffc //   log(1/frcpa(1+93/2^-8))/2
-data8 0xa0cda11eaf46390e , 0x00003ffc //   log(1/frcpa(1+94/2^-8))/2
-data8 0xa22c8f029cfa45aa , 0x00003ffc //   log(1/frcpa(1+95/2^-8))/2
-//
-data8 0xa3e48badb7856b34 , 0x00003ffc //   log(1/frcpa(1+96/2^-8))/2
-data8 0xa5459a0aa95849f9 , 0x00003ffc //   log(1/frcpa(1+97/2^-8))/2
-data8 0xa6a79c84480cfebd , 0x00003ffc //   log(1/frcpa(1+98/2^-8))/2
-data8 0xa80a946d0fcb3eb2 , 0x00003ffc //   log(1/frcpa(1+99/2^-8))/2
-data8 0xa96e831a3ea7b314 , 0x00003ffc //   log(1/frcpa(1+100/2^-8))/2
-//
-data8 0xaad369e3dc544e3b , 0x00003ffc //   log(1/frcpa(1+101/2^-8))/2
-data8 0xac92e9588952c815 , 0x00003ffc //   log(1/frcpa(1+102/2^-8))/2
-data8 0xadfa035aa1ed8fdc , 0x00003ffc //   log(1/frcpa(1+103/2^-8))/2
-data8 0xaf6219eae1ad6e34 , 0x00003ffc //   log(1/frcpa(1+104/2^-8))/2
-data8 0xb0cb2e6d8160f753 , 0x00003ffc //   log(1/frcpa(1+105/2^-8))/2
-//
-data8 0xb2354249ad950f72 , 0x00003ffc //   log(1/frcpa(1+106/2^-8))/2
-data8 0xb3a056e98ef4a3b4 , 0x00003ffc //   log(1/frcpa(1+107/2^-8))/2
-data8 0xb50c6dba52c6292a , 0x00003ffc //   log(1/frcpa(1+108/2^-8))/2
-data8 0xb679882c33876165 , 0x00003ffc //   log(1/frcpa(1+109/2^-8))/2
-data8 0xb78c07429785cedc , 0x00003ffc //   log(1/frcpa(1+110/2^-8))/2
-//
-data8 0xb8faeb8dc4a77d24 , 0x00003ffc //   log(1/frcpa(1+111/2^-8))/2
-data8 0xba6ad77eb36ae0d6 , 0x00003ffc //   log(1/frcpa(1+112/2^-8))/2
-data8 0xbbdbcc915e9bee50 , 0x00003ffc //   log(1/frcpa(1+113/2^-8))/2
-data8 0xbd4dcc44f8cf12ef , 0x00003ffc //   log(1/frcpa(1+114/2^-8))/2
-data8 0xbec0d81bf5b531fa , 0x00003ffc //   log(1/frcpa(1+115/2^-8))/2
-//
-data8 0xc034f19c139186f4 , 0x00003ffc //   log(1/frcpa(1+116/2^-8))/2
-data8 0xc14cb69f7c5e55ab , 0x00003ffc //   log(1/frcpa(1+117/2^-8))/2
-data8 0xc2c2abbb6e5fd56f , 0x00003ffc //   log(1/frcpa(1+118/2^-8))/2
-data8 0xc439b2c193e6771e , 0x00003ffc //   log(1/frcpa(1+119/2^-8))/2
-data8 0xc553acb9d5c67733 , 0x00003ffc //   log(1/frcpa(1+120/2^-8))/2
-//
-data8 0xc6cc96e441272441 , 0x00003ffc //   log(1/frcpa(1+121/2^-8))/2
-data8 0xc8469753eca88c30 , 0x00003ffc //   log(1/frcpa(1+122/2^-8))/2
-data8 0xc962cf3ce072b05c , 0x00003ffc //   log(1/frcpa(1+123/2^-8))/2
-data8 0xcadeba8771f694aa , 0x00003ffc //   log(1/frcpa(1+124/2^-8))/2
-data8 0xcc5bc08d1f72da94 , 0x00003ffc //   log(1/frcpa(1+125/2^-8))/2
-//
-data8 0xcd7a3f99ea035c29 , 0x00003ffc //   log(1/frcpa(1+126/2^-8))/2
-data8 0xcef93860c8a53c35 , 0x00003ffc //   log(1/frcpa(1+127/2^-8))/2
-data8 0xd0192f68a7ed23df , 0x00003ffc //   log(1/frcpa(1+128/2^-8))/2
-data8 0xd19a201127d3c645 , 0x00003ffc //   log(1/frcpa(1+129/2^-8))/2
-data8 0xd2bb92f4061c172c , 0x00003ffc //   log(1/frcpa(1+130/2^-8))/2
-//
-data8 0xd43e80b2ee8cc8fc , 0x00003ffc //   log(1/frcpa(1+131/2^-8))/2
-data8 0xd56173601fc4ade4 , 0x00003ffc //   log(1/frcpa(1+132/2^-8))/2
-data8 0xd6e6637efb54086f , 0x00003ffc //   log(1/frcpa(1+133/2^-8))/2
-data8 0xd80ad9f58f3c8193 , 0x00003ffc //   log(1/frcpa(1+134/2^-8))/2
-data8 0xd991d1d31aca41f8 , 0x00003ffc //   log(1/frcpa(1+135/2^-8))/2
-//
-data8 0xdab7d02231484a93 , 0x00003ffc //   log(1/frcpa(1+136/2^-8))/2
-data8 0xdc40d532cde49a54 , 0x00003ffc //   log(1/frcpa(1+137/2^-8))/2
-data8 0xdd685f79ed8b265e , 0x00003ffc //   log(1/frcpa(1+138/2^-8))/2
-data8 0xde9094bbc0e17b1d , 0x00003ffc //   log(1/frcpa(1+139/2^-8))/2
-data8 0xe01c91b78440c425 , 0x00003ffc //   log(1/frcpa(1+140/2^-8))/2
-//
-data8 0xe14658f26997e729 , 0x00003ffc //   log(1/frcpa(1+141/2^-8))/2
-data8 0xe270cdc2391e0d23 , 0x00003ffc //   log(1/frcpa(1+142/2^-8))/2
-data8 0xe3ffce3a2aa64922 , 0x00003ffc //   log(1/frcpa(1+143/2^-8))/2
-data8 0xe52bdb274ed82887 , 0x00003ffc //   log(1/frcpa(1+144/2^-8))/2
-data8 0xe6589852e75d7df6 , 0x00003ffc //   log(1/frcpa(1+145/2^-8))/2
-//
-data8 0xe786068c79937a7d , 0x00003ffc //   log(1/frcpa(1+146/2^-8))/2
-data8 0xe91903adad100911 , 0x00003ffc //   log(1/frcpa(1+147/2^-8))/2
-data8 0xea481236f7d35bb0 , 0x00003ffc //   log(1/frcpa(1+148/2^-8))/2
-data8 0xeb77d48c692e6b14 , 0x00003ffc //   log(1/frcpa(1+149/2^-8))/2
-data8 0xeca84b83d7297b87 , 0x00003ffc //   log(1/frcpa(1+150/2^-8))/2
-//
-data8 0xedd977f4962aa158 , 0x00003ffc //   log(1/frcpa(1+151/2^-8))/2
-data8 0xef7179a22f257754 , 0x00003ffc //   log(1/frcpa(1+152/2^-8))/2
-data8 0xf0a450d139366ca7 , 0x00003ffc //   log(1/frcpa(1+153/2^-8))/2
-data8 0xf1d7e0524ff9ffdb , 0x00003ffc //   log(1/frcpa(1+154/2^-8))/2
-data8 0xf30c29036a8b6cae , 0x00003ffc //   log(1/frcpa(1+155/2^-8))/2
-//
-data8 0xf4412bc411ea8d92 , 0x00003ffc //   log(1/frcpa(1+156/2^-8))/2
-data8 0xf576e97564c8619d , 0x00003ffc //   log(1/frcpa(1+157/2^-8))/2
-data8 0xf6ad62fa1b5f172f , 0x00003ffc //   log(1/frcpa(1+158/2^-8))/2
-data8 0xf7e499368b55c542 , 0x00003ffc //   log(1/frcpa(1+159/2^-8))/2
-data8 0xf91c8d10abaffe22 , 0x00003ffc //   log(1/frcpa(1+160/2^-8))/2
-//
-data8 0xfa553f7018c966f3 , 0x00003ffc //   log(1/frcpa(1+161/2^-8))/2
-data8 0xfb8eb13e185d802c , 0x00003ffc //   log(1/frcpa(1+162/2^-8))/2
-data8 0xfcc8e3659d9bcbed , 0x00003ffc //   log(1/frcpa(1+163/2^-8))/2
-data8 0xfe03d6d34d487fd2 , 0x00003ffc //   log(1/frcpa(1+164/2^-8))/2
-data8 0xff3f8c7581e9f0ae , 0x00003ffc //   log(1/frcpa(1+165/2^-8))/2
-//
-data8 0x803e029e280173ae , 0x00003ffd //   log(1/frcpa(1+166/2^-8))/2
-data8 0x80dca10cc52d0757 , 0x00003ffd //   log(1/frcpa(1+167/2^-8))/2
-data8 0x817ba200632755a1 , 0x00003ffd //   log(1/frcpa(1+168/2^-8))/2
-data8 0x821b05f3b01d6774 , 0x00003ffd //   log(1/frcpa(1+169/2^-8))/2
-data8 0x82bacd623ff19d06 , 0x00003ffd //   log(1/frcpa(1+170/2^-8))/2
-//
-data8 0x835af8c88e7a8f47 , 0x00003ffd //   log(1/frcpa(1+171/2^-8))/2
-data8 0x83c5f8299e2b4091 , 0x00003ffd //   log(1/frcpa(1+172/2^-8))/2
-data8 0x8466cb43f3d87300 , 0x00003ffd //   log(1/frcpa(1+173/2^-8))/2
-data8 0x850803a67c80ca4b , 0x00003ffd //   log(1/frcpa(1+174/2^-8))/2
-data8 0x85a9a1d11a23b461 , 0x00003ffd //   log(1/frcpa(1+175/2^-8))/2
-//
-data8 0x864ba644a18e6e05 , 0x00003ffd //   log(1/frcpa(1+176/2^-8))/2
-data8 0x86ee1182dcc432f7 , 0x00003ffd //   log(1/frcpa(1+177/2^-8))/2
-data8 0x875a925d7e48c316 , 0x00003ffd //   log(1/frcpa(1+178/2^-8))/2
-data8 0x87fdaa109d23aef7 , 0x00003ffd //   log(1/frcpa(1+179/2^-8))/2
-data8 0x88a129ed4becfaf2 , 0x00003ffd //   log(1/frcpa(1+180/2^-8))/2
-//
-data8 0x89451278ecd7f9cf , 0x00003ffd //   log(1/frcpa(1+181/2^-8))/2
-data8 0x89b29295f8432617 , 0x00003ffd //   log(1/frcpa(1+182/2^-8))/2
-data8 0x8a572ac5a5496882 , 0x00003ffd //   log(1/frcpa(1+183/2^-8))/2
-data8 0x8afc2d0ce3b2dadf , 0x00003ffd //   log(1/frcpa(1+184/2^-8))/2
-data8 0x8b6a69c608cfd3af , 0x00003ffd //   log(1/frcpa(1+185/2^-8))/2
-//
-data8 0x8c101e106e899a83 , 0x00003ffd //   log(1/frcpa(1+186/2^-8))/2
-data8 0x8cb63de258f9d626 , 0x00003ffd //   log(1/frcpa(1+187/2^-8))/2
-data8 0x8d2539c5bd19e2b1 , 0x00003ffd //   log(1/frcpa(1+188/2^-8))/2
-data8 0x8dcc0e064b29e6f1 , 0x00003ffd //   log(1/frcpa(1+189/2^-8))/2
-data8 0x8e734f45d88357ae , 0x00003ffd //   log(1/frcpa(1+190/2^-8))/2
-//
-data8 0x8ee30cef034a20db , 0x00003ffd //   log(1/frcpa(1+191/2^-8))/2
-data8 0x8f8b0515686d1d06 , 0x00003ffd //   log(1/frcpa(1+192/2^-8))/2
-data8 0x90336bba039bf32f , 0x00003ffd //   log(1/frcpa(1+193/2^-8))/2
-data8 0x90a3edd23d1c9d58 , 0x00003ffd //   log(1/frcpa(1+194/2^-8))/2
-data8 0x914d0de2f5d61b32 , 0x00003ffd //   log(1/frcpa(1+195/2^-8))/2
-//
-data8 0x91be0c20d28173b5 , 0x00003ffd //   log(1/frcpa(1+196/2^-8))/2
-data8 0x9267e737c06cd34a , 0x00003ffd //   log(1/frcpa(1+197/2^-8))/2
-data8 0x92d962ae6abb1237 , 0x00003ffd //   log(1/frcpa(1+198/2^-8))/2
-data8 0x9383fa6afbe2074c , 0x00003ffd //   log(1/frcpa(1+199/2^-8))/2
-data8 0x942f0421651c1c4e , 0x00003ffd //   log(1/frcpa(1+200/2^-8))/2
-//
-data8 0x94a14a3845bb985e , 0x00003ffd //   log(1/frcpa(1+201/2^-8))/2
-data8 0x954d133857f861e7 , 0x00003ffd //   log(1/frcpa(1+202/2^-8))/2
-data8 0x95bfd96468e604c4 , 0x00003ffd //   log(1/frcpa(1+203/2^-8))/2
-data8 0x9632d31cafafa858 , 0x00003ffd //   log(1/frcpa(1+204/2^-8))/2
-data8 0x96dfaabd86fa1647 , 0x00003ffd //   log(1/frcpa(1+205/2^-8))/2
-//
-data8 0x9753261fcbb2a594 , 0x00003ffd //   log(1/frcpa(1+206/2^-8))/2
-data8 0x9800c11b426b996d , 0x00003ffd //   log(1/frcpa(1+207/2^-8))/2
-data8 0x9874bf4d45ae663c , 0x00003ffd //   log(1/frcpa(1+208/2^-8))/2
-data8 0x99231f5ee9a74f79 , 0x00003ffd //   log(1/frcpa(1+209/2^-8))/2
-data8 0x9997a18a56bcad28 , 0x00003ffd //   log(1/frcpa(1+210/2^-8))/2
-//
-data8 0x9a46c873a3267e79 , 0x00003ffd //   log(1/frcpa(1+211/2^-8))/2
-data8 0x9abbcfc621eb6cb6 , 0x00003ffd //   log(1/frcpa(1+212/2^-8))/2
-data8 0x9b310cb0d354c990 , 0x00003ffd //   log(1/frcpa(1+213/2^-8))/2
-data8 0x9be14cf9e1b3515c , 0x00003ffd //   log(1/frcpa(1+214/2^-8))/2
-data8 0x9c5710b8cbb73a43 , 0x00003ffd //   log(1/frcpa(1+215/2^-8))/2
-//
-data8 0x9ccd0abd301f399c , 0x00003ffd //   log(1/frcpa(1+216/2^-8))/2
-data8 0x9d7e67f3bdce8888 , 0x00003ffd //   log(1/frcpa(1+217/2^-8))/2
-data8 0x9df4ea81a99daa01 , 0x00003ffd //   log(1/frcpa(1+218/2^-8))/2
-data8 0x9e6ba405a54514ba , 0x00003ffd //   log(1/frcpa(1+219/2^-8))/2
-data8 0x9f1e21c8c7bb62b3 , 0x00003ffd //   log(1/frcpa(1+220/2^-8))/2
-//
-data8 0x9f956593f6b6355c , 0x00003ffd //   log(1/frcpa(1+221/2^-8))/2
-data8 0xa00ce1092e5498c3 , 0x00003ffd //   log(1/frcpa(1+222/2^-8))/2
-data8 0xa0c08309c4b912c1 , 0x00003ffd //   log(1/frcpa(1+223/2^-8))/2
-data8 0xa1388a8c6faa2afa , 0x00003ffd //   log(1/frcpa(1+224/2^-8))/2
-data8 0xa1b0ca7095b5f985 , 0x00003ffd //   log(1/frcpa(1+225/2^-8))/2
-//
-data8 0xa22942eb47534a00 , 0x00003ffd //   log(1/frcpa(1+226/2^-8))/2
-data8 0xa2de62326449d0a3 , 0x00003ffd //   log(1/frcpa(1+227/2^-8))/2
-data8 0xa357690f88bfe345 , 0x00003ffd //   log(1/frcpa(1+228/2^-8))/2
-data8 0xa3d0a93f45169a4b , 0x00003ffd //   log(1/frcpa(1+229/2^-8))/2
-data8 0xa44a22f7ffe65f30 , 0x00003ffd //   log(1/frcpa(1+230/2^-8))/2
-//
-data8 0xa500c5e5b4c1aa36 , 0x00003ffd //   log(1/frcpa(1+231/2^-8))/2
-data8 0xa57ad064eb2ebbc2 , 0x00003ffd //   log(1/frcpa(1+232/2^-8))/2
-data8 0xa5f5152dedf4384e , 0x00003ffd //   log(1/frcpa(1+233/2^-8))/2
-data8 0xa66f9478856233ec , 0x00003ffd //   log(1/frcpa(1+234/2^-8))/2
-data8 0xa6ea4e7cca02c32e , 0x00003ffd //   log(1/frcpa(1+235/2^-8))/2
-//
-data8 0xa765437325341ccf , 0x00003ffd //   log(1/frcpa(1+236/2^-8))/2
-data8 0xa81e21e6c75b4020 , 0x00003ffd //   log(1/frcpa(1+237/2^-8))/2
-data8 0xa899ab333fe2b9ca , 0x00003ffd //   log(1/frcpa(1+238/2^-8))/2
-data8 0xa9157039c51ebe71 , 0x00003ffd //   log(1/frcpa(1+239/2^-8))/2
-data8 0xa991713433c2b999 , 0x00003ffd //   log(1/frcpa(1+240/2^-8))/2
-//
-data8 0xaa0dae5cbcc048b3 , 0x00003ffd //   log(1/frcpa(1+241/2^-8))/2
-data8 0xaa8a27ede5eb13ad , 0x00003ffd //   log(1/frcpa(1+242/2^-8))/2
-data8 0xab06de228a9e3499 , 0x00003ffd //   log(1/frcpa(1+243/2^-8))/2
-data8 0xab83d135dc633301 , 0x00003ffd //   log(1/frcpa(1+244/2^-8))/2
-data8 0xac3fb076adc7fe7a , 0x00003ffd //   log(1/frcpa(1+245/2^-8))/2
-//
-data8 0xacbd3cbbe47988f1 , 0x00003ffd //   log(1/frcpa(1+246/2^-8))/2
-data8 0xad3b06b1a5dc57c3 , 0x00003ffd //   log(1/frcpa(1+247/2^-8))/2
-data8 0xadb90e94af887717 , 0x00003ffd //   log(1/frcpa(1+248/2^-8))/2
-data8 0xae3754a218f7c816 , 0x00003ffd //   log(1/frcpa(1+249/2^-8))/2
-data8 0xaeb5d9175437afa2 , 0x00003ffd //   log(1/frcpa(1+250/2^-8))/2
-//
-data8 0xaf349c322e9c7cee , 0x00003ffd //   log(1/frcpa(1+251/2^-8))/2
-data8 0xafb39e30d1768d1c , 0x00003ffd //   log(1/frcpa(1+252/2^-8))/2
-data8 0xb032df51c2c93116 , 0x00003ffd //   log(1/frcpa(1+253/2^-8))/2
-data8 0xb0b25fd3e6035ad9 , 0x00003ffd //   log(1/frcpa(1+254/2^-8))/2
-data8 0xb1321ff67cba178c , 0x00003ffd //   log(1/frcpa(1+255/2^-8))/2
-LOCAL_OBJECT_END(atanh_data_3)
-
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(atanh)
-
-{ .mfi
-      getf.exp      rArgSExpb = f8                  // Must recompute if x unorm
-      fclass.m      p13,p0 = f8, 0x0b               // is arg denormal ?
-      mov           rExpbMask = 0x1ffff
-}
-{ .mfi
-      addl          DataPtr = @ltoff(atanh_data), gp
-      fnma.s1       fOneMx = f8, f1, f1             // fOneMx = 1 - x
-      mov           rBias = 0xffff
-}
-;;
-
-{ .mfi
-      mov           rNearZeroBound = 0xfffd         // biased exp of 1/4
-      fclass.m      p12,p0 = f8, 0xc7               // is arg NaN or +/-0 ?
-      nop.i         0
-}
-{ .mfi
-      ld8           DataPtr = [DataPtr]
-      fma.s1        fOnePx = f8, f1, f1             // fOnePx = 1 + x
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fcmp.lt.s1    p10,p11 = f8,f0                 // is x < 0 ?
-      nop.i         0
-}
-{ .mfb
-      nop.m         0
-      fnorm.s1      fNormX = f8                     // Normalize x
-(p13) br.cond.spnt  ATANH_UNORM                     // Branch if x=unorm
-}
-;;
-
-ATANH_COMMON:
-// Return here if x=unorm and not denorm
-{ .mfi
-      adds          Data2Ptr = 0x50, DataPtr
-      fma.s1        fX2 = f8, f8, f0                // x^2
-      nop.i         0
-}
-{ .mfb
-      adds          Data3Ptr = 0xC0, DataPtr
-(p12) fma.d.s0      f8 = f8,f1,f8                   // NaN or +/-0
-(p12) br.ret.spnt   b0                              // Exit for x Nan or zero
-}
-;;
-
-{ .mfi
-      ldfe          fC9 = [Data2Ptr], 16
-(p11) frcpa.s1      fRcp0, p0 = f1, fOneMx
-      nop.i         0
-}
-;;
-
-{ .mfi
-      ldfe          fC8 = [Data2Ptr], 16
-(p10) frcpa.s1      fRcp0n, p0 = f1, fOnePx
-      and           rArgExpb = rArgSExpb, rExpbMask // biased exponent
-}
-{ .mfi
-      nop.m         0
-(p10) fma.s1        fOneMx = fOnePx, f1, f0         // fOnePx = 1 - |x|
-      nop.i         0
-}
-;;
-
-{ .mfi
-      ldfe          fC7 = [Data2Ptr], 16
-(p10) fnma.s1       fOnePx = fNormX, f1, f1         // fOnePx = 1 + |x|
-      cmp.ge        p6,p0 = rArgExpb, rBias         // is Expb(Arg) >= Expb(1) ?
-}
-{ .mfb
-      nop.m         0
-      nop.f         0
-(p6)  br.cond.spnt  atanh_ge_one                    // Branch if |x| >=1.0
-}
-;;
-
-{ .mfi
-      ldfe          fC6 = [Data2Ptr], 16
-      nop.f         0
-      nop.i         0
-}
-;;
-
-{ .mfi
-      ldfe          fC5 = [Data2Ptr], 16
-      fma.s1        fX4 = fX2, fX2, f0              // x^4
-      cmp.gt        p8,p0 = rNearZeroBound, rArgExpb
-}
-{ .mfb
-      ldfe          fC2 = [Data3Ptr], 16
-      fma.s1        fX3 = fX2, fNormX, f0           // x^3
-(p8)  br.cond.spnt  atanh_near_zero                 // Exit if 0 < |x| < 0.25
-}
-;;
-
-// Main path: 0.25 <= |x| < 1.0
-// NR method: iteration #1
-.pred.rel "mutex",p11,p10
-{ .mfi
-      ldfpd         fP5, fP4 = [DataPtr], 16
-(p11) fnma.s1       fRcp1 = fRcp0, fOneMx, f1       // t = 1 - r0*x
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-(p10) fnma.s1       fRcp1 = fRcp0n, fOneMx, f1      // t = 1 - r0*x
-      nop.i         0
-}
-;;
-
-{ .mfi
-      ldfpd         fP3, fP2 = [DataPtr], 16
-      // r1 = r0 + r0*t = r0 + r0*(1 - r0*x)
-(p11) fma.s1        fRcp1 = fRcp0, fRcp1, fRcp0
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      // r1 = r0 + r0*t = r0 + r0*(1 - r0*x)
-(p10) fma.s1        fRcp1 = fRcp0n, fRcp1, fRcp0n
-      nop.i         0
-}
-;;
-
-// NR method: iteration #2
-{ .mfi
-      ldfd          fP1 = [DataPtr], 16
-      fnma.s1       fRcp2 = fRcp1, fOneMx, f1       // t = 1 - r1*x
-      nop.i         0
-}
-;;
-
-{ .mfi
-      ldfe          fLog2 = [DataPtr], 16
-      // r2 = r1 + r1*t = r1 + r1*(1 - r1*x)
-      fma.s1        fRcp2 = fRcp1, fRcp2, fRcp1
-      nop.i         0
-}
-;;
-
-// NR method: iteration #3
-{ .mfi
-      adds          RcpTablePtr = 0xB0, DataPtr
-      fnma.s1       fRcp3 = fRcp2, fOneMx, f1       // t = 1 - r2*x
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fma.s1        fY4Rcp = fRcp2, fOnePx, f0      // fY4Rcp = r2*(1 + x)
-      nop.i         0
-}
-;;
-
-// polynomial approximation & final reconstruction
-{ .mfi
-      nop.m         0
-      frcpa.s1      fRcp, p0 = f1, fY4Rcp
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      // y = r2 * (1 + x) + r2 * (1 + x) * t = (1 + x) * (r2 + r2*(1 - r2*x))
-      fma.s1        fY = fY4Rcp, fRcp3, fY4Rcp
-      nop.i         0
-}
-;;
-
-{ .mmi
-      getf.exp      rSExpb = fY4Rcp                 // biased exponent and sign
-;;
-      getf.sig      rSig = fY4Rcp                   // significand
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fms.s1        fR = fY, fRcp, f1               // fR = fY * fRcp - 1
-      nop.i         0
-}
-;;
-
-{ .mmi
-      and           rExpb = rSExpb, rExpbMask
-;;
-      sub           rN = rExpb, rBias               // exponent
-      extr.u        rInd = rSig,55,8                // Extract 8 bits
-}
-;;
-
-{ .mmi
-      setf.sig      fN4Cvt = rN
-      shladd        RcpTablePtr = rInd, 4, RcpTablePtr
-      nop.i         0
-}
-;;
-
-{ .mfi
-      ldfe          fLogT = [RcpTablePtr]
-      fma.s1        fR2 = fR, fR, f0                // r^2
-      nop.i         0
-}
-{
-      nop.m         0
-      fma.s1        fP54 = fP5, fR, fP4             // P5*r + P4
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.s1        fP32 = fP3, fR, fP2             // P3*r + P2
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.s1        fR3 = fR2, fR, f0               // r^3
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fma.s1        fP10 = fP1, fR2, fR             // P1*r^2 + r
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fcvt.xf       fN = fN4Cvt
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fma.s1        fP54 = fP54, fR2, fP32      // (P5*r + P4)*r^2 + P3*r + P2
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.s1        fLogT_N = fN, fLog2, fLogT      // N*Log2 + LogT
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      // ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
-      fma.s1        fP54 = fP54, fR3, fP10
-      nop.i         0
-}
-;;
-
-.pred.rel "mutex",p11,p10
-{ .mfi
-      nop.m         0
-      // 0.5*(((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r) + 0.5*(N*Log2 + T)
-(p11) fnma.d.s0     f8 = fP54, fP1, fLogT_N
-      nop.i         0
-}
-{ .mfb
-      nop.m         0
-     // -0.5*(((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r) - 0.5*(N*Log2 + T)
-(p10) fms.d.s0      f8 = fP54, fP1, fLogT_N
-      br.ret.sptk   b0                          // Exit for 0.25 <= |x| < 1.0
-}
-;;
-
-// Here if 0 < |x| < 0.25
-atanh_near_zero:
-{ .mfi
-      ldfe          fC4 = [Data2Ptr], 16
-      fma.s1        fP98 = fC9, fX2, fC8           // C9*x^2 + C8
-      nop.i         0
-}
-{ .mfi
-      ldfe          fC1 = [Data3Ptr], 16
-      fma.s1        fP76 = fC7, fX2, fC6           // C7*x^2 + C6
-      nop.i         0
-}
-;;
-
-{ .mfi
-      ldfe          fC3 = [Data2Ptr], 16
-      fma.s1        fX8 = fX4, fX4, f0             // x^8
-      nop.i         0
-}
-{ .mfi
-      ldfe          fC0 = [Data3Ptr], 16
-      nop.f         0
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.s1        fP98 = fP98, fX4, fP76     // C9*x^6 + C8*x^4 + C7*x^2 + C6
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.s1        fP54 = fC5, fX2, fC4           // C5*x^2 + C4
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.s1        fP32 = fC3, fX2, fC2           // C3*x^2 + C2
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.s1        fP10 = fC1, fX2, fC0           // C1*x^2 + C0
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.s1        fP54 = fP54, fX4, fP32      // C5*x^6 + C4*x^4 + C3*x^2 + C2
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      // C9*x^14 + C8*x^12 + C7*x^10 + C6*x^8 + C5*x^6 + C4*x^4 + C3*x^2 + C2
-      fma.s1        fP98 = fP98, fX8, fP54
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      // C9*x^18 + C8*x^16 + C7*x^14 + C6*x^12 + C5*x^10 + C4*x^8 + C3*x^6 +
-      // C2*x^4 + C1*x^2 + C0
-      fma.s1        fP98 = fP98, fX4, fP10
-      nop.i         0
-}
-;;
-
-{ .mfb
-      nop.m         0
-      // C9*x^21 + C8*x^19 + C7*x^17 + C6*x^15 + C5*x^13 + C4*x^11 + C3*x^9 +
-      // C2*x^7 + C1*x^5 + C0*x^3 + x
-      fma.d.s0      f8 = fP98, fX3, fNormX
-      br.ret.sptk   b0                           // Exit for 0 < |x| < 0.25
-}
-;;
-
-ATANH_UNORM:
-// Here if x=unorm
-{ .mfi
-      getf.exp      rArgSExpb = fNormX           // Recompute if x unorm
-      fclass.m      p0,p13 = fNormX, 0x0b        // Test x denorm
-      nop.i         0
-}
-;;
-
-{ .mfb
-      nop.m         0
-      fcmp.eq.s0    p7,p0 = f8, f0        // Dummy to set denormal flag
-(p13) br.cond.sptk  ATANH_COMMON          // Continue if x unorm and not denorm
-}
-;;
-
-.pred.rel "mutex",p10,p11
-{ .mfi
-      nop.m         0
-(p10) fnma.d.s0     f8 = f8,f8,f8                // Result x-x^2 if x=-denorm
-      nop.i         0
-}
-{ .mfb
-      nop.m         0
-(p11) fma.d.s0      f8 = f8,f8,f8                // Result x+x^2 if x=+denorm
-      br.ret.spnt   b0                           // Exit if denorm
-}
-;;
-
-// Here if |x| >= 1.0
-atanh_ge_one:
-{ .mfi
-      alloc         r32 = ar.pfs,1,3,4,0
-      fmerge.s      fAbsX = f0, f8          // Form |x|
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fmerge.s      f10 = f8, f8            // Save input for error call
-      nop.i         0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fcmp.eq.s1    p6,p7 = fAbsX, f1       // Test for |x| = 1.0
-      nop.i         0
-}
-;;
-
-// Set error tag and result, and raise invalid flag if |x| > 1.0
-{ .mfi
-(p7)  mov           atanh_GR_tag = 131
-(p7)  frcpa.s0      f8, p0 = f0, f0         // Get QNaN, and raise invalid
-      nop.i         0
-}
-;;
-
-// Set error tag and result, and raise Z flag if |x| = 1.0
-{ .mfi
-      nop.m         0
-(p6)  frcpa.s0      fRcp, p0 = f1, f0       // Get inf, and raise Z flag
-      nop.i         0
-}
-;;
-
-{ .mfb
-(p6)  mov           atanh_GR_tag = 132
-(p6)  fmerge.s      f8 = f8, fRcp           // result is +-inf
-      br.cond.sptk  __libm_error_region     // Exit if |x| >= 1.0
-}
-;;
-
-GLOBAL_LIBM_END(atanh)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-{ .mfi
-      add           GR_Parameter_Y=-32,sp        // Parameter 2 value
-      nop.f         0
-.save   ar.pfs,GR_SAVE_PFS
-      mov           GR_SAVE_PFS=ar.pfs           // Save ar.pfs
-}
-{ .mfi
-.fframe 64
-      add sp=-64,sp                              // Create new stack
-      nop.f 0
-      mov GR_SAVE_GP=gp                          // Save gp
-};;
-
-{ .mmi
-      stfd [GR_Parameter_Y] = f1,16              // STORE Parameter 2 on stack
-      add GR_Parameter_X = 16,sp                 // Parameter 1 address
-.save   b0, GR_SAVE_B0
-      mov GR_SAVE_B0=b0                          // Save b0
-};;
-
-.body
-{ .mib
-      stfd [GR_Parameter_X] = f10                // STORE Parameter 1 on stack
-      add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
-      nop.b 0
-}
-{ .mib
-      stfd [GR_Parameter_Y] = f8                 // STORE Parameter 3 on stack
-      add   GR_Parameter_Y = -16,GR_Parameter_Y
-      br.call.sptk b0=__libm_error_support#      // Call error handling function
-};;
-
-{ .mmi
-      add   GR_Parameter_RESULT = 48,sp
-      nop.m 0
-      nop.i 0
-};;
-
-{ .mmi
-      ldfd  f8 = [GR_Parameter_RESULT]           // Get return result off stack
-.restore sp
-      add   sp = 64,sp                           // Restore stack pointer
-      mov   b0 = GR_SAVE_B0                      // Restore return address
-};;
-
-{ .mib
-      mov   gp = GR_SAVE_GP                      // Restore gp
-      mov   ar.pfs = GR_SAVE_PFS                 // Restore ar.pfs
-      br.ret.sptk     b0                         // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type   __libm_error_support#,@function
-.global __libm_error_support#