about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_asinl.S
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@gmail.com>2012-01-07 11:19:05 -0500
committerUlrich Drepper <drepper@gmail.com>2012-01-07 11:19:05 -0500
commitd75a0a62b12c35ee85f786d5f8d155ab39909411 (patch)
treec3479d23878ef4ab05629d4a60f4f7623269c1dd /sysdeps/ia64/fpu/e_asinl.S
parentdcc9756b5bfbb2b97f73bad863d7e1c4002bea98 (diff)
downloadglibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.gz
glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.xz
glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.zip
Remove IA-64 support
Diffstat (limited to 'sysdeps/ia64/fpu/e_asinl.S')
-rw-r--r--sysdeps/ia64/fpu/e_asinl.S2528
1 files changed, 0 insertions, 2528 deletions
diff --git a/sysdeps/ia64/fpu/e_asinl.S b/sysdeps/ia64/fpu/e_asinl.S
deleted file mode 100644
index ad65a731fc..0000000000
--- a/sysdeps/ia64/fpu/e_asinl.S
+++ /dev/null
@@ -1,2528 +0,0 @@
-.file "asinl.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/28/01 New version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// long double asinl(long double)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-// Implementation
-//
-// For |s| in [2^{-4}, sqrt(2)/2]:
-// Let t= 2^k*1.b1 b2..b6 1, where s= 2^k*1.b1 b2.. b52
-// asin(s)= asin(t)+asin(r), where r= s*sqrt(1-t^2)-t*sqrt(1-s^2), i.e.
-// r= (s-t)*sqrt(1-t^2)-t*sqrt(1-t^2)*(sqrt((1-s^2)/(1-t^2))-1)
-// asin(r)-r evaluated as 9-degree polynomial (c3*r^3+c5*r^5+c7*r^7+c9*r^9)
-// The 64-bit significands of sqrt(1-t^2), 1/(1-t^2) are read from the table,
-// along with the high and low parts of asin(t) (stored as two double precision
-// values)
-//
-// |s| in (sqrt(2)/2, sqrt(255/256)):
-// Let t= 2^k*1.b1 b2..b6 1, where (1-s^2)*frsqrta(1-s^2)= 2^k*1.b1 b2..b6..
-// asin(|s|)= pi/2-asin(t)+asin(r), r= s*t-sqrt(1-s^2)*sqrt(1-t^2)
-// To minimize accumulated errors, r is computed as
-// r= (t*s)_s-t^2*y*z+z*y*(t^2-1+s^2)_s+z*y*(1-s^2)_s*x+z'*y*(1-s^2)*PS29+
-// +(t*s-(t*s)_s)+z*y*((t^2-1-(t^2-1+s^2)_s)+s^2)+z*y*(1-s^2-(1-s^2)_s)+
-// +ez*z'*y*(1-s^2)*(1-x),
-// where y= frsqrta(1-s^2), z= (sqrt(1-t^2))_s (rounded to 24 significant bits)
-// z'= sqrt(1-t^2), x= ((1-s^2)*y^2-1)/2
-//
-// |s|<2^{-4}: evaluate as 17-degree polynomial
-// (or simply return s, if|s|<2^{-64})
-//
-// |s| in [sqrt(255/256), 1): asin(|s|)= pi/2-asin(sqrt(1-s^2))
-// use 17-degree polynomial for asin(sqrt(1-s^2)),
-// 9-degree polynomial to evaluate sqrt(1-s^2)
-// High order term is (pi/2)_high-(y*(1-s^2))_high
-//
-
-
-
-// Registers used
-//==============================================================
-// f6-f15, f32-f36
-// r2-r3, r23-r23
-// p6, p7, p8, p12
-//
-
-
-       GR_SAVE_B0= r33
-       GR_SAVE_PFS= r34
-       GR_SAVE_GP= r35 // This reg. can safely be used
-       GR_SAVE_SP= r36
-
-       GR_Parameter_X= r37
-       GR_Parameter_Y= r38
-       GR_Parameter_RESULT= r39
-       GR_Parameter_TAG= r40
-
-       FR_X= f10
-       FR_Y= f1
-       FR_RESULT= f8
-
-
-
-RODATA
-
-.align 16
-
-
-
-LOCAL_OBJECT_START(T_table)
-
-// stores 64-bit significand of 1/(1-t^2), 64-bit significand of sqrt(1-t^2),
-// asin(t)_high (double precision), asin(t)_low (double precision)
-
-data8 0x80828692b71c4391, 0xff7ddcec2d87e879
-data8 0x3fb022bc0ae531a0, 0x3c9f599c7bb42af6
-data8 0x80869f0163d0b082, 0xff79cad2247914d3
-data8 0x3fb062dd26afc320, 0x3ca4eff21bd49c5c
-data8 0x808ac7d5a8690705, 0xff75a89ed6b626b9
-data8 0x3fb0a2ff4a1821e0, 0x3cb7e33b58f164cc
-data8 0x808f0112ad8ad2e0, 0xff7176517c2cc0cb
-data8 0x3fb0e32279319d80, 0x3caee31546582c43
-data8 0x80934abba8a1da0a, 0xff6d33e949b1ed31
-data8 0x3fb12346b8101da0, 0x3cb8bfe463d087cd
-data8 0x8097a4d3dbe63d8f, 0xff68e16571015c63
-data8 0x3fb1636c0ac824e0, 0x3c8870a7c5a3556f
-data8 0x809c0f5e9662b3dd, 0xff647ec520bca0f0
-data8 0x3fb1a392756ed280, 0x3c964f1a927461ae
-data8 0x80a08a5f33fadc66, 0xff600c07846a6830
-data8 0x3fb1e3b9fc19e580, 0x3c69eb3576d56332
-data8 0x80a515d91d71acd4, 0xff5b892bc475affa
-data8 0x3fb223e2a2dfbe80, 0x3c6a4e19fd972fb6
-data8 0x80a9b1cfc86ff7cd, 0xff56f631062cf93d
-data8 0x3fb2640c6dd76260, 0x3c62041160e0849e
-data8 0x80ae5e46b78b0d68, 0xff5253166bc17794
-data8 0x3fb2a43761187c80, 0x3cac61651af678c0
-data8 0x80b31b417a4b756b, 0xff4d9fdb14463dc8
-data8 0x3fb2e46380bb6160, 0x3cb06ef23eeba7a1
-data8 0x80b7e8c3ad33c369, 0xff48dc7e1baf6738
-data8 0x3fb32490d0d910c0, 0x3caa05f480b300d5
-data8 0x80bcc6d0f9c784d6, 0xff4408fe9ad13e37
-data8 0x3fb364bf558b3820, 0x3cb01e7e403aaab9
-data8 0x80c1b56d1692492d, 0xff3f255ba75f5f4e
-data8 0x3fb3a4ef12ec3540, 0x3cb4fe8fcdf5f5f1
-data8 0x80c6b49bc72ec446, 0xff3a319453ebd961
-data8 0x3fb3e5200d171880, 0x3caf2dc089b2b7e2
-data8 0x80cbc460dc4e0ae8, 0xff352da7afe64ac6
-data8 0x3fb425524827a720, 0x3cb75a855e7c6053
-data8 0x80d0e4c033bee9c4, 0xff301994c79afb32
-data8 0x3fb46585c83a5e00, 0x3cb3264981c019ab
-data8 0x80d615bdb87556db, 0xff2af55aa431f291
-data8 0x3fb4a5ba916c73c0, 0x3c994251d94427b5
-data8 0x80db575d6291fd8a, 0xff25c0f84bae0cb9
-data8 0x3fb4e5f0a7dbdb20, 0x3cbee2fcc4c786cb
-data8 0x80e0a9a33769e535, 0xff207c6cc0ec09fd
-data8 0x3fb526280fa74620, 0x3c940656e5549b91
-data8 0x80e60c93498e32cd, 0xff1b27b703a19c98
-data8 0x3fb56660ccee2740, 0x3ca7082374d7b2cd
-data8 0x80eb8031b8d4052d, 0xff15c2d6105c72f8
-data8 0x3fb5a69ae3d0b520, 0x3c7c4d46e09ac68a
-data8 0x80f10482b25c6c8a, 0xff104dc8e0813ed4
-data8 0x3fb5e6d6586fec20, 0x3c9aa84ffd9b4958
-data8 0x80f6998a709c7cfb, 0xff0ac88e6a4ab926
-data8 0x3fb627132eed9140, 0x3cbced2cbbbe7d16
-data8 0x80fc3f4d3b657c44, 0xff053325a0c8a2ec
-data8 0x3fb667516b6c34c0, 0x3c6489c5fc68595a
-data8 0x8101f5cf67ed2af8, 0xfeff8d8d73dec2bb
-data8 0x3fb6a791120f33a0, 0x3cbe12acf159dfad
-data8 0x8107bd1558d6291f, 0xfef9d7c4d043df29
-data8 0x3fb6e7d226fabba0, 0x3ca386d099cd0dc7
-data8 0x810d95237e38766a, 0xfef411ca9f80b5f7
-data8 0x3fb72814ae53cc20, 0x3cb9f35731e71dd6
-data8 0x81137dfe55aa0e29, 0xfeee3b9dc7eef009
-data8 0x3fb76858ac403a00, 0x3c74df3dd959141a
-data8 0x811977aa6a479f0f, 0xfee8553d2cb8122c
-data8 0x3fb7a89e24e6b0e0, 0x3ca6034406ee42bc
-data8 0x811f822c54bd5ef8, 0xfee25ea7add46a91
-data8 0x3fb7e8e51c6eb6a0, 0x3cb82f8f78e68ed7
-data8 0x81259d88bb4ffac1, 0xfedc57dc2809fb1d
-data8 0x3fb8292d9700ad60, 0x3cbebb73c0e653f9
-data8 0x812bc9c451e5a257, 0xfed640d974eb6068
-data8 0x3fb8697798c5d620, 0x3ca2feee76a9701b
-data8 0x813206e3da0f3124, 0xfed0199e6ad6b585
-data8 0x3fb8a9c325e852e0, 0x3cb9e88f2f4d0efe
-data8 0x813854ec231172f9, 0xfec9e229dcf4747d
-data8 0x3fb8ea1042932a00, 0x3ca5ff40d81f66fd
-data8 0x813eb3e209ee858f, 0xfec39a7a9b36538b
-data8 0x3fb92a5ef2f247c0, 0x3cb5e3bece4d6b07
-data8 0x814523ca796f56ce, 0xfebd428f72561efe
-data8 0x3fb96aaf3b3281a0, 0x3cb7b9e499436d7c
-data8 0x814ba4aa6a2d3ff9, 0xfeb6da672bd48fe4
-data8 0x3fb9ab011f819860, 0x3cb9168143cc1a7f
-data8 0x81523686e29bbdd7, 0xfeb062008df81f50
-data8 0x3fb9eb54a40e3ac0, 0x3cb6e544197eb1e1
-data8 0x8158d964f7124614, 0xfea9d95a5bcbd65a
-data8 0x3fba2ba9cd080800, 0x3ca9a717be8f7446
-data8 0x815f8d49c9d639e4, 0xfea34073551e1ac8
-data8 0x3fba6c009e9f9260, 0x3c741e989a60938a
-data8 0x8166523a8b24f626, 0xfe9c974a367f785c
-data8 0x3fbaac591d0661a0, 0x3cb2c1290107e57d
-data8 0x816d283c793e0114, 0xfe95ddddb94166cb
-data8 0x3fbaecb34c6ef600, 0x3c9c7d5fbaec405d
-data8 0x81740f54e06d55bd, 0xfe8f142c93750c50
-data8 0x3fbb2d0f310cca00, 0x3cbc09479a9cbcfb
-data8 0x817b07891b15cd5e, 0xfe883a3577e9fceb
-data8 0x3fbb6d6ccf1455e0, 0x3cb9450bff4ee307
-data8 0x818210de91bba6c8, 0xfe814ff7162cf62f
-data8 0x3fbbadcc2abb1180, 0x3c9227fda12a8d24
-data8 0x81892b5abb0f2bf9, 0xfe7a55701a8697b1
-data8 0x3fbbee2d48377700, 0x3cb6fad72acfe356
-data8 0x819057031bf7760e, 0xfe734a9f2dfa1810
-data8 0x3fbc2e902bc10600, 0x3cb4465b588d16ad
-data8 0x819793dd479d4fbe, 0xfe6c2f82f643f68b
-data8 0x3fbc6ef4d9904580, 0x3c8b9ac54823960d
-data8 0x819ee1eedf76367a, 0xfe65041a15d8a92c
-data8 0x3fbcaf5b55dec6a0, 0x3ca2b8d28a954db2
-data8 0x81a6413d934f7a66, 0xfe5dc8632be3477f
-data8 0x3fbcefc3a4e727a0, 0x3c9380da83713ab4
-data8 0x81adb1cf21597d4b, 0xfe567c5cd44431d5
-data8 0x3fbd302dcae51600, 0x3ca995b83421756a
-data8 0x81b533a9563310b8, 0xfe4f2005a78fb50f
-data8 0x3fbd7099cc155180, 0x3caefa2f7a817d5f
-data8 0x81bcc6d20cf4f373, 0xfe47b35c3b0caaeb
-data8 0x3fbdb107acb5ae80, 0x3cb455fc372dd026
-data8 0x81c46b4f2f3d6e68, 0xfe40365f20b316d6
-data8 0x3fbdf177710518c0, 0x3cbee3dcc5b01434
-data8 0x81cc2126b53c1144, 0xfe38a90ce72abf36
-data8 0x3fbe31e91d439620, 0x3cb3e131c950aebd
-data8 0x81d3e85ea5bd8ee2, 0xfe310b6419c9c33a
-data8 0x3fbe725cb5b24900, 0x3c01d3fac6029027
-data8 0x81dbc0fd1637b9c1, 0xfe295d6340932d15
-data8 0x3fbeb2d23e937300, 0x3c6304cc44aeedd1
-data8 0x81e3ab082ad5a0a4, 0xfe219f08e03580b3
-data8 0x3fbef349bc2a77e0, 0x3cac1d2d6abe9c72
-data8 0x81eba6861683cb97, 0xfe19d0537a0946e2
-data8 0x3fbf33c332bbe020, 0x3ca0909dba4e96ca
-data8 0x81f3b37d1afc9979, 0xfe11f1418c0f94e2
-data8 0x3fbf743ea68d5b60, 0x3c937fc12a2a779a
-data8 0x81fbd1f388d4be45, 0xfe0a01d190f09063
-data8 0x3fbfb4bc1be5c340, 0x3cbf51a504b55813
-data8 0x820401efbf87e248, 0xfe020201fff9efea
-data8 0x3fbff53b970d1e80, 0x3ca625444b260078
-data8 0x82106ad2ffdca049, 0xfdf5e3940a49135e
-data8 0x3fc02aff52065460, 0x3c9125d113e22a57
-data8 0x8221343d6ea1d3e2, 0xfde581a45429b0a0
-data8 0x3fc06b84f8e03220, 0x3caccf362295894b
-data8 0x82324434adbf99c2, 0xfdd4de1a001fb775
-data8 0x3fc0ac0ed1fe7240, 0x3cc22f676096b0af
-data8 0x82439aee8d0c7747, 0xfdc3f8e8269d1f03
-data8 0x3fc0ec9cee9e4820, 0x3cca147e2886a628
-data8 0x825538a1d0fcb2f0, 0xfdb2d201a9b1ba66
-data8 0x3fc12d2f6006f0a0, 0x3cc72b36633bc2d4
-data8 0x82671d86345c5cee, 0xfda1695934d723e7
-data8 0x3fc16dc63789de60, 0x3cb11f9c47c7b83f
-data8 0x827949d46a121770, 0xfd8fbee13cbbb823
-data8 0x3fc1ae618682e620, 0x3cce1b59020cef8e
-data8 0x828bbdc61eeab9ba, 0xfd7dd28bff0c9f34
-data8 0x3fc1ef015e586c40, 0x3cafec043e0225ee
-data8 0x829e7995fb6de9e1, 0xfd6ba44b823ee1ca
-data8 0x3fc22fa5d07b90c0, 0x3cba905409caf8e3
-data8 0x82b17d7fa5bbc982, 0xfd5934119557883a
-data8 0x3fc2704eee685da0, 0x3cb5ef21838a823e
-data8 0x82c4c9bfc373d276, 0xfd4681cfcfb2c161
-data8 0x3fc2b0fcc9a5f3e0, 0x3ccc7952c5e0e312
-data8 0x82d85e93fba50136, 0xfd338d7790ca0f41
-data8 0x3fc2f1af73c6ba00, 0x3cbecf5f977d1ca9
-data8 0x82ec3c3af8c76b32, 0xfd2056f9fff97727
-data8 0x3fc33266fe6889a0, 0x3c9d329c022ebdb5
-data8 0x830062f46abf6022, 0xfd0cde480c43b327
-data8 0x3fc373237b34de60, 0x3cc95806d4928adb
-data8 0x8314d30108ea35f0, 0xfcf923526c1562b2
-data8 0x3fc3b3e4fbe10520, 0x3cbc299fe7223d54
-data8 0x83298ca29434df97, 0xfce526099d0737ed
-data8 0x3fc3f4ab922e4a60, 0x3cb59d8bb8fdbccc
-data8 0x833e901bd93c7009, 0xfcd0e65de39f1f7c
-data8 0x3fc435774fea2a60, 0x3c9ec18b43340914
-data8 0x8353ddb0b278aad8, 0xfcbc643f4b106055
-data8 0x3fc4764846ee80a0, 0x3cb90402efd87ed6
-data8 0x836975a60a70c52e, 0xfca79f9da4fab13a
-data8 0x3fc4b71e8921b860, 0xbc58f23449ed6365
-data8 0x837f5841ddfa7a46, 0xfc92986889284148
-data8 0x3fc4f7fa2876fca0, 0xbc6294812bf43acd
-data8 0x839585cb3e839773, 0xfc7d4e8f554ab12f
-data8 0x3fc538db36ee6960, 0x3cb910b773d4c578
-data8 0x83abfe8a5466246f, 0xfc67c2012cb6fa68
-data8 0x3fc579c1c6953cc0, 0x3cc5ede909fc47fc
-data8 0x83c2c2c861474d91, 0xfc51f2acf82041d5
-data8 0x3fc5baade9860880, 0x3cac63cdfc3588e5
-data8 0x83d9d2cfc2813637, 0xfc3be08165519325
-data8 0x3fc5fb9fb1e8e3a0, 0x3cbf7c8466578c29
-data8 0x83f12eebf397daac, 0xfc258b6ce6e6822f
-data8 0x3fc63c9731f39d40, 0x3cb6d2a7ffca3e9e
-data8 0x8408d76990b9296e, 0xfc0ef35db402af94
-data8 0x3fc67d947be9eec0, 0x3cb1980da09e6566
-data8 0x8420cc9659487cd7, 0xfbf81841c8082dc4
-data8 0x3fc6be97a21daf00, 0x3cc2ac8330e59aa5
-data8 0x84390ec132759ecb, 0xfbe0fa06e24cc390
-data8 0x3fc6ffa0b6ef05e0, 0x3ccc1a030fee56c4
-data8 0x84519e3a29df811a, 0xfbc9989a85ce0954
-data8 0x3fc740afcccca000, 0x3cc19692a5301ca6
-data8 0x846a7b527842d61b, 0xfbb1f3e9f8e45dc4
-data8 0x3fc781c4f633e2c0, 0x3cc0e98f3868a508
-data8 0x8483a65c8434b5f0, 0xfb9a0be244f4af45
-data8 0x3fc7c2e045b12140, 0x3cb2a8d309754420
-data8 0x849d1fabe4e97dd7, 0xfb81e070362116d1
-data8 0x3fc80401cddfd120, 0x3ca7a44544aa4ce6
-data8 0x84b6e795650817ea, 0xfb6971805af8411e
-data8 0x3fc84529a16ac020, 0x3c9e3b709c7d6f94
-data8 0x84d0fe6f0589da92, 0xfb50beff0423a2f5
-data8 0x3fc88657d30c49e0, 0x3cc60d65a7f0a278
-data8 0x84eb649000a73014, 0xfb37c8d84414755c
-data8 0x3fc8c78c758e8e80, 0x3cc94b2ee984c2b7
-data8 0x85061a50ccd13781, 0xfb1e8ef7eeaf764b
-data8 0x3fc908c79bcba900, 0x3cc8540ae794a2fe
-data8 0x8521200b1fb8916e, 0xfb05114998f76a83
-data8 0x3fc94a0958ade6c0, 0x3ca127f49839fa9c
-data8 0x853c7619f1618bf6, 0xfaeb4fb898b65d19
-data8 0x3fc98b51bf2ffee0, 0x3c8c9ba7a803909a
-data8 0x85581cd97f45e274, 0xfad14a3004259931
-data8 0x3fc9cca0e25d4ac0, 0x3cba458e91d3bf54
-data8 0x857414a74f8446b4, 0xfab7009ab1945a54
-data8 0x3fca0df6d551fe80, 0x3cc78ea1d329d2b2
-data8 0x85905de2341dea46, 0xfa9c72e3370d2fbc
-data8 0x3fca4f53ab3b6200, 0x3ccf60dca86d57ef
-data8 0x85acf8ea4e423ff8, 0xfa81a0f3e9fa0ee9
-data8 0x3fca90b777580aa0, 0x3ca4c4e2ec8a867e
-data8 0x85c9e62111a92e7d, 0xfa668ab6dec711b1
-data8 0x3fcad2224cf814e0, 0x3c303de5980d071c
-data8 0x85e725e947fbee97, 0xfa4b3015e883dbfe
-data8 0x3fcb13943f7d5f80, 0x3cc29d4eefa5cb1e
-data8 0x8604b8a7144cd054, 0xfa2f90fa9883a543
-data8 0x3fcb550d625bc6a0, 0x3c9e01a746152daf
-data8 0x86229ebff69e2415, 0xfa13ad4e3dfbe1c1
-data8 0x3fcb968dc9195ea0, 0x3ccc091bd73ae518
-data8 0x8640d89acf78858c, 0xf9f784f9e5a1877b
-data8 0x3fcbd815874eb160, 0x3cb5f4b89875e187
-data8 0x865f669fe390c7f5, 0xf9db17e65944eacf
-data8 0x3fcc19a4b0a6f9c0, 0x3cc5c0bc2b0bbf14
-data8 0x867e4938df7dc45f, 0xf9be65fc1f6c2e6e
-data8 0x3fcc5b3b58e061e0, 0x3cc1ca70df8f57e7
-data8 0x869d80d0db7e4c0c, 0xf9a16f237aec427a
-data8 0x3fcc9cd993cc4040, 0x3cbae93acc85eccf
-data8 0x86bd0dd45f4f8265, 0xf98433446a806e70
-data8 0x3fccde7f754f5660, 0x3cb22f70e64568d0
-data8 0x86dcf0b16613e37a, 0xf966b246a8606170
-data8 0x3fcd202d11620fa0, 0x3c962030e5d4c849
-data8 0x86fd29d7624b3d5d, 0xf948ec11a9d4c45b
-data8 0x3fcd61e27c10c0a0, 0x3cc7083c91d59217
-data8 0x871db9b741dbe44a, 0xf92ae08c9eca4941
-data8 0x3fcda39fc97be7c0, 0x3cc9258579e57211
-data8 0x873ea0c3722d6af2, 0xf90c8f9e71633363
-data8 0x3fcde5650dd86d60, 0x3ca4755a9ea582a9
-data8 0x875fdf6fe45529e8, 0xf8edf92dc5875319
-data8 0x3fce27325d6fe520, 0x3cbc1e2b6c1954f9
-data8 0x878176321154e2bc, 0xf8cf1d20f87270b8
-data8 0x3fce6907cca0d060, 0x3cb6ca4804750830
-data8 0x87a36580fe6bccf5, 0xf8affb5e20412199
-data8 0x3fceaae56fdee040, 0x3cad6b310d6fd46c
-data8 0x87c5add5417a5cb9, 0xf89093cb0b7c0233
-data8 0x3fceeccb5bb33900, 0x3cc16e99cedadb20
-data8 0x87e84fa9057914ca, 0xf870e64d40a15036
-data8 0x3fcf2eb9a4bcb600, 0x3cc75ee47c8b09e9
-data8 0x880b4b780f02b709, 0xf850f2c9fdacdf78
-data8 0x3fcf70b05fb02e20, 0x3cad6350d379f41a
-data8 0x882ea1bfc0f228ac, 0xf830b926379e6465
-data8 0x3fcfb2afa158b8a0, 0x3cce0ccd9f829985
-data8 0x885252ff21146108, 0xf810394699fe0e8e
-data8 0x3fcff4b77e97f3e0, 0x3c9b30faa7a4c703
-data8 0x88765fb6dceebbb3, 0xf7ef730f865f6df0
-data8 0x3fd01b6406332540, 0x3cdc5772c9e0b9bd
-data8 0x88ad1f69be2cc730, 0xf7bdc59bc9cfbd97
-data8 0x3fd04cf8ad203480, 0x3caeef44fe21a74a
-data8 0x88f763f70ae2245e, 0xf77a91c868a9c54e
-data8 0x3fd08f23ce0162a0, 0x3cd6290ab3fe5889
-data8 0x89431fc7bc0c2910, 0xf73642973c91298e
-data8 0x3fd0d1610f0c1ec0, 0x3cc67401a01f08cf
-data8 0x8990573407c7738e, 0xf6f0d71d1d7a2dd6
-data8 0x3fd113b0c65d88c0, 0x3cc7aa4020fe546f
-data8 0x89df0eb108594653, 0xf6aa4e6a05cfdef2
-data8 0x3fd156134ada6fe0, 0x3cc87369da09600c
-data8 0x8a2f4ad16e0ed78a, 0xf662a78900c35249
-data8 0x3fd19888f43427a0, 0x3cc62b220f38e49c
-data8 0x8a811046373e0819, 0xf619e180181d97cc
-data8 0x3fd1db121aed7720, 0x3ca3ede7490b52f4
-data8 0x8ad463df6ea0fa2c, 0xf5cffb504190f9a2
-data8 0x3fd21daf185fa360, 0x3caafad98c1d6c1b
-data8 0x8b294a8cf0488daf, 0xf584f3f54b8604e6
-data8 0x3fd2606046bf95a0, 0x3cdb2d704eeb08fa
-data8 0x8b7fc95f35647757, 0xf538ca65c960b582
-data8 0x3fd2a32601231ec0, 0x3cc661619fa2f126
-data8 0x8bd7e588272276f8, 0xf4eb7d92ff39fccb
-data8 0x3fd2e600a3865760, 0x3c8a2a36a99aca4a
-data8 0x8c31a45bf8e9255e, 0xf49d0c68cd09b689
-data8 0x3fd328f08ad12000, 0x3cb9efaf1d7ab552
-data8 0x8c8d0b520a35eb18, 0xf44d75cd993cfad2
-data8 0x3fd36bf614dcc040, 0x3ccacbb590bef70d
-data8 0x8cea2005d068f23d, 0xf3fcb8a23ab4942b
-data8 0x3fd3af11a079a6c0, 0x3cd9775872cf037d
-data8 0x8d48e837c8cd5027, 0xf3aad3c1e2273908
-data8 0x3fd3f2438d754b40, 0x3ca03304f667109a
-data8 0x8da969ce732f3ac7, 0xf357c60202e2fd7e
-data8 0x3fd4358c3ca032e0, 0x3caecf2504ff1a9d
-data8 0x8e0baad75555e361, 0xf3038e323ae9463a
-data8 0x3fd478ec0fd419c0, 0x3cc64bdc3d703971
-data8 0x8e6fb18807ba877e, 0xf2ae2b1c3a6057f7
-data8 0x3fd4bc6369fa40e0, 0x3cbb7122ec245cf2
-data8 0x8ed5843f4bda74d5, 0xf2579b83aa556f0c
-data8 0x3fd4fff2af11e2c0, 0x3c9cfa2dc792d394
-data8 0x8f3d29862c861fef, 0xf1ffde2612ca1909
-data8 0x3fd5439a4436d000, 0x3cc38d46d310526b
-data8 0x8fa6a81128940b2d, 0xf1a6f1bac0075669
-data8 0x3fd5875a8fa83520, 0x3cd8bf59b8153f8a
-data8 0x901206c1686317a6, 0xf14cd4f2a730d480
-data8 0x3fd5cb33f8cf8ac0, 0x3c9502b5c4d0e431
-data8 0x907f4ca5fe9cf739, 0xf0f186784a125726
-data8 0x3fd60f26e847b120, 0x3cc8a1a5e0acaa33
-data8 0x90ee80fd34aeda5e, 0xf09504ef9a212f18
-data8 0x3fd65333c7e43aa0, 0x3cae5b029cb1f26e
-data8 0x915fab35e37421c6, 0xf0374ef5daab5c45
-data8 0x3fd6975b02b8e360, 0x3cd5aa1c280c45e6
-data8 0x91d2d2f0d894d73c, 0xefd86321822dbb51
-data8 0x3fd6db9d05213b20, 0x3cbecf2c093ccd8b
-data8 0x9248000249200009, 0xef7840021aca5a72
-data8 0x3fd71ffa3cc87fc0, 0x3cb8d273f08d00d9
-data8 0x92bf3a7351f081d2, 0xef16e42021d7cbd5
-data8 0x3fd7647318b1ad20, 0x3cbce099d79cdc46
-data8 0x93388a8386725713, 0xeeb44dfce6820283
-data8 0x3fd7a908093fc1e0, 0x3ccb033ec17a30d9
-data8 0x93b3f8aa8e653812, 0xee507c126774fa45
-data8 0x3fd7edb9803e3c20, 0x3cc10aedb48671eb
-data8 0x94318d99d341ade4, 0xedeb6cd32f891afb
-data8 0x3fd83287f0e9cf80, 0x3c994c0c1505cd2a
-data8 0x94b1523e3dedc630, 0xed851eaa3168f43c
-data8 0x3fd87773cff956e0, 0x3cda3b7bce6a6b16
-data8 0x95334fc20577563f, 0xed1d8ffaa2279669
-data8 0x3fd8bc7d93a70440, 0x3cd4922edc792ce2
-data8 0x95b78f8e8f92f274, 0xecb4bf1fd2be72da
-data8 0x3fd901a5b3b9cf40, 0x3cd3fea1b00f9d0d
-data8 0x963e1b4e63a87c3f, 0xec4aaa6d08694cc1
-data8 0x3fd946eca98f2700, 0x3cdba4032d968ff1
-data8 0x96c6fcef314074fc, 0xebdf502d53d65fea
-data8 0x3fd98c52f024e800, 0x3cbe7be1ab8c95c9
-data8 0x97523ea3eab028b2, 0xeb72aea36720793e
-data8 0x3fd9d1d904239860, 0x3cd72d08a6a22b70
-data8 0x97dfeae6f4ee4a9a, 0xeb04c4096a884e94
-data8 0x3fda177f63e8ef00, 0x3cd818c3c1ebfac7
-data8 0x98700c7c6d85d119, 0xea958e90cfe1efd7
-data8 0x3fda5d468f92a540, 0x3cdf45fbfaa080fe
-data8 0x9902ae7487a9caa1, 0xea250c6224aab21a
-data8 0x3fdaa32f090998e0, 0x3cd715a9353cede4
-data8 0x9997dc2e017a9550, 0xe9b33b9ce2bb7638
-data8 0x3fdae939540d3f00, 0x3cc545c014943439
-data8 0x9a2fa158b29b649b, 0xe9401a573f8aa706
-data8 0x3fdb2f65f63f6c60, 0x3cd4a63c2f2ca8e2
-data8 0x9aca09f835466186, 0xe8cba69df9f0bf35
-data8 0x3fdb75b5773075e0, 0x3cda310ce1b217ec
-data8 0x9b672266ab1e0136, 0xe855de74266193d4
-data8 0x3fdbbc28606babc0, 0x3cdc84b75cca6c44
-data8 0x9c06f7579f0b7bd5, 0xe7debfd2f98c060b
-data8 0x3fdc02bf3d843420, 0x3cd225d967ffb922
-data8 0x9ca995db058cabdc, 0xe76648a991511c6e
-data8 0x3fdc497a9c224780, 0x3cde08101c5b825b
-data8 0x9d4f0b605ce71e88, 0xe6ec76dcbc02d9a7
-data8 0x3fdc905b0c10d420, 0x3cb1abbaa3edf120
-data8 0x9df765b9eecad5e6, 0xe6714846bdda7318
-data8 0x3fdcd7611f4b8a00, 0x3cbf6217ae80aadf
-data8 0x9ea2b320350540fe, 0xe5f4bab71494cd6b
-data8 0x3fdd1e8d6a0d56c0, 0x3cb726e048cc235c
-data8 0x9f51023562fc5676, 0xe576cbf239235ecb
-data8 0x3fdd65e082df5260, 0x3cd9e66872bd5250
-data8 0xa002620915c2a2f6, 0xe4f779b15f5ec5a7
-data8 0x3fddad5b02a82420, 0x3c89743b0b57534b
-data8 0xa0b6e21c2caf9992, 0xe476c1a233a7873e
-data8 0x3fddf4fd84bbe160, 0x3cbf7adea9ee3338
-data8 0xa16e9264cc83a6b2, 0xe3f4a16696608191
-data8 0x3fde3cc8a6ec6ee0, 0x3cce46f5a51f49c6
-data8 0xa22983528f3d8d49, 0xe3711694552da8a8
-data8 0x3fde84bd099a6600, 0x3cdc78f6490a2d31
-data8 0xa2e7c5d2e2e69460, 0xe2ec1eb4e1e0a5fb
-data8 0x3fdeccdb4fc685c0, 0x3cdd3aedb56a4825
-data8 0xa3a96b5599bd2532, 0xe265b74506fbe1c9
-data8 0x3fdf15241f23b3e0, 0x3cd440f3c6d65f65
-data8 0xa46e85d1ae49d7de, 0xe1ddddb499b3606f
-data8 0x3fdf5d98202994a0, 0x3cd6c44bd3fb745a
-data8 0xa53727ca3e11b99e, 0xe1548f662951b00d
-data8 0x3fdfa637fe27bf60, 0x3ca8ad1cd33054dd
-data8 0xa6036453bdc20186, 0xe0c9c9aeabe5e481
-data8 0x3fdfef0467599580, 0x3cc0f1ac0685d78a
-data8 0xa6d34f1969dda338, 0xe03d89d5281e4f81
-data8 0x3fe01bff067d6220, 0x3cc0731e8a9ef057
-data8 0xa7a6fc62f7246ff3, 0xdfafcd125c323f54
-data8 0x3fe04092d1ae3b40, 0x3ccabda24b59906d
-data8 0xa87e811a861df9b9, 0xdf20909061bb9760
-data8 0x3fe0653df0fd9fc0, 0x3ce94c8dcc722278
-data8 0xa959f2d2dd687200, 0xde8fd16a4e5f88bd
-data8 0x3fe08a00c1cae320, 0x3ce6b888bb60a274
-data8 0xaa3967cdeea58bda, 0xddfd8cabd1240d22
-data8 0x3fe0aedba3221c00, 0x3ced5941cd486e46
-data8 0xab904fd587263c84, 0xdd1f4472e1cf64ed
-data8 0x3fe0e651e85229c0, 0x3cdb6701042299b1
-data8 0xad686d44dd5a74bb, 0xdbf173e1f6b46e92
-data8 0x3fe1309cbf4cdb20, 0x3cbf1be7bb3f0ec5
-data8 0xaf524e15640ebee4, 0xdabd54896f1029f6
-data8 0x3fe17b4ee1641300, 0x3ce81dd055b792f1
-data8 0xb14eca24ef7db3fa, 0xd982cb9ae2f47e41
-data8 0x3fe1c66b9ffd6660, 0x3cd98ea31eb5ddc7
-data8 0xb35ec807669920ce, 0xd841bd1b8291d0b6
-data8 0x3fe211f66db3a5a0, 0x3ca480c35a27b4a2
-data8 0xb5833e4755e04dd1, 0xd6fa0bd3150b6930
-data8 0x3fe25df2e05b6c40, 0x3ca4bc324287a351
-data8 0xb7bd34c8000b7bd3, 0xd5ab9939a7d23aa1
-data8 0x3fe2aa64b32f7780, 0x3cba67314933077c
-data8 0xba0dc64d126cc135, 0xd4564563ce924481
-data8 0x3fe2f74fc9289ac0, 0x3cec1a1dc0efc5ec
-data8 0xbc76222cbbfa74a6, 0xd2f9eeed501125a8
-data8 0x3fe344b82f859ac0, 0x3ceeef218de413ac
-data8 0xbef78e31985291a9, 0xd19672e2182f78be
-data8 0x3fe392a22087b7e0, 0x3cd2619ba201204c
-data8 0xc19368b2b0629572, 0xd02baca5427e436a
-data8 0x3fe3e11206694520, 0x3cb5d0b3143fe689
-data8 0xc44b2ae8c6733e51, 0xceb975d60b6eae5d
-data8 0x3fe4300c7e945020, 0x3cbd367143da6582
-data8 0xc7206b894212dfef, 0xcd3fa6326ff0ac9a
-data8 0x3fe47f965d201d60, 0x3ce797c7a4ec1d63
-data8 0xca14e1b0622de526, 0xcbbe13773c3c5338
-data8 0x3fe4cfb4b09d1a20, 0x3cedfadb5347143c
-data8 0xcd2a6825eae65f82, 0xca34913d425a5ae9
-data8 0x3fe5206cc637e000, 0x3ce2798b38e54193
-data8 0xd06301095e1351ee, 0xc8a2f0d3679c08c0
-data8 0x3fe571c42e3d0be0, 0x3ccd7cb9c6c2ca68
-data8 0xd3c0d9f50057adda, 0xc70901152d59d16b
-data8 0x3fe5c3c0c108f940, 0x3ceb6c13563180ab
-data8 0xd74650a98cc14789, 0xc5668e3d4cbf8828
-data8 0x3fe61668a46ffa80, 0x3caa9092e9e3c0e5
-data8 0xdaf5f8579dcc8f8f, 0xc3bb61b3eed42d02
-data8 0x3fe669c251ad69e0, 0x3cccf896ef3b4fee
-data8 0xded29f9f9a6171b4, 0xc20741d7f8e8e8af
-data8 0x3fe6bdd49bea05c0, 0x3cdc6b29937c575d
-data8 0xe2df5765854ccdb0, 0xc049f1c2d1b8014b
-data8 0x3fe712a6b76c6e80, 0x3ce1ddc6f2922321
-data8 0xe71f7a9b94fcb4c3, 0xbe833105ec291e91
-data8 0x3fe76840418978a0, 0x3ccda46e85432c3d
-data8 0xeb96b72d3374b91e, 0xbcb2bb61493b28b3
-data8 0x3fe7bea9496d5a40, 0x3ce37b42ec6e17d3
-data8 0xf049183c3f53c39b, 0xbad848720223d3a8
-data8 0x3fe815ea59dab0a0, 0x3cb03ad41bfc415b
-data8 0xf53b11ec7f415f15, 0xb8f38b57c53c9c48
-data8 0x3fe86e0c84010760, 0x3cc03bfcfb17fe1f
-data8 0xfa718f05adbf2c33, 0xb70432500286b185
-data8 0x3fe8c7196b9225c0, 0x3ced99fcc6866ba9
-data8 0xfff200c3f5489608, 0xb509e6454dca33cc
-data8 0x3fe9211b54441080, 0x3cb789cb53515688
-// The following table entries are not used
-//data8 0x82e138a0fac48700, 0xb3044a513a8e6132
-//data8 0x3fe97c1d30f5b7c0, 0x3ce1eb765612d1d0
-//data8 0x85f4cc7fc670d021, 0xb0f2fb2ea6cbbc88
-//data8 0x3fe9d82ab4b5fde0, 0x3ced3fe6f27e8039
-//data8 0x89377c1387d5b908, 0xaed58e9a09014d5c
-//data8 0x3fea355065f87fa0, 0x3cbef481d25f5b58
-//data8 0x8cad7a2c98dec333, 0xacab929ce114d451
-//data8 0x3fea939bb451e2a0, 0x3c8e92b4fbf4560f
-//data8 0x905b7dfc99583025, 0xaa748cc0dbbbc0ec
-//data8 0x3feaf31b11270220, 0x3cdced8c61bd7bd5
-//data8 0x9446d8191f80dd42, 0xa82ff92687235baf
-//data8 0x3feb53de0bcffc20, 0x3cbe1722fb47509e
-//data8 0x98758ba086e4000a, 0xa5dd497a9c184f58
-//data8 0x3febb5f571cb0560, 0x3ce0c7774329a613
-//data8 0x9cee6c7bf18e4e24, 0xa37be3c3cd1de51b
-//data8 0x3fec197373bc7be0, 0x3ce08ebdb55c3177
-//data8 0xa1b944000a1b9440, 0xa10b2101b4f27e03
-//data8 0x3fec7e6bd023da60, 0x3ce5fc5fd4995959
-//data8 0xa6defd8ba04d3e38, 0x9e8a4b93cad088ec
-//data8 0x3fece4f404e29b20, 0x3cea3413401132b5
-//data8 0xac69dd408a10c62d, 0x9bf89d5d17ddae8c
-//data8 0x3fed4d2388f63600, 0x3cd5a7fb0d1d4276
-//data8 0xb265c39cbd80f97a, 0x99553d969fec7beb
-//data8 0x3fedb714101e0a00, 0x3cdbda21f01193f2
-//data8 0xb8e081a16ae4ae73, 0x969f3e3ed2a0516c
-//data8 0x3fee22e1da97bb00, 0x3ce7231177f85f71
-//data8 0xbfea427678945732, 0x93d5990f9ee787af
-//data8 0x3fee90ac13b18220, 0x3ce3c8a5453363a5
-//data8 0xc79611399b8c90c5, 0x90f72bde80febc31
-//data8 0x3fef009542b712e0, 0x3ce218fd79e8cb56
-//data8 0xcffa8425040624d7, 0x8e02b4418574ebed
-//data8 0x3fef72c3d2c57520, 0x3cd32a717f82203f
-//data8 0xd93299cddcf9cf23, 0x8af6ca48e9c44024
-//data8 0x3fefe762b77744c0, 0x3ce53478a6bbcf94
-//data8 0xe35eda760af69ad9, 0x87d1da0d7f45678b
-//data8 0x3ff02f511b223c00, 0x3ced6e11782c28fc
-//data8 0xeea6d733421da0a6, 0x84921bbe64ae029a
-//data8 0x3ff06c5c6f8ce9c0, 0x3ce71fc71c1ffc02
-//data8 0xfb3b2c73fc6195cc, 0x813589ba3a5651b6
-//data8 0x3ff0aaf2613700a0, 0x3cf2a72d2fd94ef3
-//data8 0x84ac1fcec4203245, 0xfb73a828893df19e
-//data8 0x3ff0eb367c3fd600, 0x3cf8054c158610de
-//data8 0x8ca50621110c60e6, 0xf438a14c158d867c
-//data8 0x3ff12d51caa6b580, 0x3ce6bce9748739b6
-//data8 0x95b8c2062d6f8161, 0xecb3ccdd37b369da
-//data8 0x3ff1717418520340, 0x3ca5c2732533177c
-//data8 0xa0262917caab4ad1, 0xe4dde4ddc81fd119
-//data8 0x3ff1b7d59dd40ba0, 0x3cc4c7c98e870ff5
-//data8 0xac402c688b72f3f4, 0xdcae469be46d4c8d
-//data8 0x3ff200b93cc5a540, 0x3c8dd6dc1bfe865a
-//data8 0xba76968b9eabd9ab, 0xd41a8f3df1115f7f
-//data8 0x3ff24c6f8f6affa0, 0x3cf1acb6d2a7eff7
-//data8 0xcb63c87c23a71dc5, 0xcb161074c17f54ec
-//data8 0x3ff29b5b338b7c80, 0x3ce9b5845f6ec746
-//data8 0xdfe323b8653af367, 0xc19107d99ab27e42
-//data8 0x3ff2edf6fac7f5a0, 0x3cf77f961925fa02
-//data8 0xf93746caaba3e1f1, 0xb777744a9df03bff
-//data8 0x3ff344df237486c0, 0x3cf6ddf5f6ddda43
-//data8 0x8ca77052f6c340f0, 0xacaf476f13806648
-//data8 0x3ff3a0dfa4bb4ae0, 0x3cfee01bbd761bff
-//data8 0xa1a48604a81d5c62, 0xa11575d30c0aae50
-//data8 0x3ff4030b73c55360, 0x3cf1cf0e0324d37c
-//data8 0xbe45074b05579024, 0x9478e362a07dd287
-//data8 0x3ff46ce4c738c4e0, 0x3ce3179555367d12
-//data8 0xe7a08b5693d214ec, 0x8690e3575b8a7c3b
-//data8 0x3ff4e0a887c40a80, 0x3cfbd5d46bfefe69
-//data8 0x94503d69396d91c7, 0xedd2ce885ff04028
-//data8 0x3ff561ebd9c18cc0, 0x3cf331bd176b233b
-//data8 0xced1d96c5bb209e6, 0xc965278083808702
-//data8 0x3ff5f71d7ff42c80, 0x3ce3301cc0b5a48c
-//data8 0xabac2cee0fc24e20, 0x9c4eb1136094cbbd
-//data8 0x3ff6ae4c63222720, 0x3cf5ff46874ee51e
-//data8 0x8040201008040201, 0xb4d7ac4d9acb1bf4
-//data8 0x3ff7b7d33b928c40, 0x3cfacdee584023bb
-LOCAL_OBJECT_END(T_table)
-
-
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
-       // C_3
-data8 0xaaaaaaaaaaaaaaab, 0x0000000000003ffc
-       // C_5
-data8 0x999999999999999a, 0x0000000000003ffb
-       // C_7, C_9
-data8 0x3fa6db6db6db6db7, 0x3f9f1c71c71c71c8
-       // pi/2 (low, high)
-data8 0x3C91A62633145C07, 0x3FF921FB54442D18
-       // C_11, C_13
-data8 0x3f96e8ba2e8ba2e9, 0x3f91c4ec4ec4ec4e
-       // C_15, C_17
-data8 0x3f8c99999999999a, 0x3f87a87878787223
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-R_DBL_S = r21
-R_EXP0 = r22
-R_EXP = r15
-R_SGNMASK = r23
-R_TMP = r24
-R_TMP2 = r25
-R_INDEX = r26
-R_TMP3 = r27
-R_TMP03 = r27
-R_TMP4 = r28
-R_TMP5 = r23
-R_TMP6 = r22
-R_TMP7 = r21
-R_T = r29
-R_BIAS = r20
-
-F_T = f6
-F_1S2 = f7
-F_1S2_S = f9
-F_INV_1T2 = f10
-F_SQRT_1T2 = f11
-F_S2T2 = f12
-F_X = f13
-F_D = f14
-F_2M64 = f15
-
-F_CS2 = f32
-F_CS3 = f33
-F_CS4 = f34
-F_CS5 = f35
-F_CS6 = f36
-F_CS7 = f37
-F_CS8 = f38
-F_CS9 = f39
-F_S23 = f40 
-F_S45 = f41 
-F_S67 = f42 
-F_S89 = f43 
-F_S25 = f44 
-F_S69 = f45 
-F_S29 = f46 
-F_X2 = f47 
-F_X4 = f48 
-F_TSQRT = f49 
-F_DTX = f50 
-F_R = f51 
-F_R2 = f52 
-F_R3 = f53 
-F_R4 = f54 
-
-F_C3 = f55 
-F_C5 = f56 
-F_C7 = f57 
-F_C9 = f58 
-F_P79 = f59 
-F_P35 = f60 
-F_P39 = f61 
-
-F_ATHI = f62 
-F_ATLO = f63 
-
-F_T1 = f64 
-F_Y = f65 
-F_Y2 = f66 
-F_ANDMASK = f67 
-F_ORMASK = f68 
-F_S = f69 
-F_05 = f70 
-F_SQRT_1S2 = f71 
-F_DS = f72 
-F_Z = f73 
-F_1T2 = f74 
-F_DZ = f75 
-F_ZE = f76 
-F_YZ = f77 
-F_Y1S2 = f78 
-F_Y1S2X = f79 
-F_1X = f80 
-F_ST = f81 
-F_1T2_ST = f82 
-F_TSS = f83 
-F_Y1S2X2 = f84 
-F_DZ_TERM = f85 
-F_DTS = f86 
-F_DS2X = f87 
-F_T2 = f88 
-F_ZY1S2S = f89 
-F_Y1S2_1X = f90 
-F_TS = f91
-F_PI2_LO = f92 
-F_PI2_HI = f93 
-F_S19 = f94 
-F_INV1T2_2 = f95 
-F_CORR = f96 
-F_DZ0 = f97 
-
-F_C11 = f98 
-F_C13 = f99 
-F_C15 = f100
-F_C17 = f101
-F_P1113 = f102
-F_P1517 = f103
-F_P1117 = f104
-F_P317 = f105
-F_R8 = f106
-F_HI = f107
-F_1S2_HI = f108
-F_DS2 = f109
-F_Y2_2 = f110
-F_S2 = f111
-F_S_DS2 = f112
-F_S_1S2S = f113
-F_XL = f114
-F_2M128 = f115
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(asinl)
-
-{.mfi
-       // get exponent, mantissa (rounded to double precision) of s
-       getf.d R_DBL_S = f8
-       // 1-s^2
-       fnma.s1 F_1S2 = f8, f8, f1
-       // r2 = pointer to T_table
-       addl r2 = @ltoff(T_table), gp
-}
-
-{.mfi
-       // sign mask
-       mov R_SGNMASK = 0x20000
-       nop.f 0
-       // bias-63-1
-       mov R_TMP03 = 0xffff-64;;
-}
-
-
-{.mfi
-       // get exponent of s
-       getf.exp R_EXP = f8
-       nop.f 0
-       // R_TMP4 = 2^45
-       shl R_TMP4 = R_SGNMASK, 45-17
-}
-
-{.mlx
-       // load bias-4
-       mov R_TMP = 0xffff-4
-       // load RU(sqrt(2)/2) to integer register (in double format, shifted left by 1)
-       movl R_TMP2 = 0x7fcd413cccfe779a;;
-}
-
-
-{.mfi
-       // load 2^{-64} in FP register
-       setf.exp F_2M64 = R_TMP03
-       nop.f 0
-       // index = (0x7-exponent)|b1 b2.. b6
-       extr.u R_INDEX = R_DBL_S, 46, 9
-}
-
-{.mfi
-       // get t = sign|exponent|b1 b2.. b6 1 x.. x
-       or R_T = R_DBL_S, R_TMP4
-       nop.f 0
-       // R_TMP4 = 2^45-1
-       sub R_TMP4 = R_TMP4, r0, 1;;
-}
-
-
-{.mfi
-       // get t = sign|exponent|b1 b2.. b6 1 0.. 0
-       andcm R_T = R_T, R_TMP4
-       nop.f 0
-       // eliminate sign from R_DBL_S (shift left by 1)
-       shl R_TMP3 = R_DBL_S, 1
-}
-
-{.mfi
-       // R_BIAS = 3*2^6
-       mov R_BIAS = 0xc0
-       nop.f 0
-       // eliminate sign from R_EXP
-       andcm R_EXP0 = R_EXP, R_SGNMASK;;
-}
-
-
-
-{.mfi
-       // load start address for T_table
-       ld8 r2 = [r2]
-       nop.f 0
-       // p8 = 1 if |s|> = sqrt(2)/2
-       cmp.geu p8, p0 = R_TMP3, R_TMP2
-}
-
-{.mlx
-       // p7 = 1 if |s|<2^{-4} (exponent of s<bias-4)
-       cmp.lt p7, p0 = R_EXP0, R_TMP
-       // sqrt coefficient cs8 = -33*13/128
-       movl R_TMP2 = 0xc0568000;;
-}
-
-
-
-{.mbb
-       // load t in FP register
-       setf.d F_T = R_T
-       // if |s|<2^{-4}, take alternate path
- (p7) br.cond.spnt SMALL_S
-       // if |s|> = sqrt(2)/2, take alternate path
- (p8) br.cond.sptk LARGE_S
-}
-
-{.mlx
-       // index = (4-exponent)|b1 b2.. b6
-       sub R_INDEX = R_INDEX, R_BIAS
-       // sqrt coefficient cs9 = 55*13/128
-       movl R_TMP = 0x40b2c000;;
-}
-
-
-{.mfi
-       // sqrt coefficient cs8 = -33*13/128
-       setf.s F_CS8 = R_TMP2
-       nop.f 0
-       // shift R_INDEX by 5
-       shl R_INDEX = R_INDEX, 5
-}
-
-{.mfi
-       // sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
-       mov R_TMP4 = 0xffff - 1
-       nop.f 0
-       // sqrt coefficient cs6 = -21/16
-       mov R_TMP6 = 0xbfa8;;
-}
-
-
-{.mlx
-       // table index
-       add r2 = r2, R_INDEX
-       // sqrt coefficient cs7 = 33/16
-       movl R_TMP2 = 0x40040000;;
-}
-
-
-{.mmi
-       // load cs9 = 55*13/128
-       setf.s F_CS9 = R_TMP
-       // sqrt coefficient cs5 = 7/8
-       mov R_TMP3 = 0x3f60
-       // sqrt coefficient cs6 = 21/16
-       shl R_TMP6 = R_TMP6, 16;;
-}
-
-
-{.mmi
-       // load significand of 1/(1-t^2)
-       ldf8 F_INV_1T2 = [r2], 8
-       // sqrt coefficient cs7 = 33/16
-       setf.s F_CS7 = R_TMP2
-       // sqrt coefficient cs4 = -5/8
-       mov R_TMP5 = 0xbf20;;
-}
-
-
-{.mmi
-       // load significand of sqrt(1-t^2)
-       ldf8 F_SQRT_1T2 = [r2], 8
-       // sqrt coefficient cs6 = 21/16
-       setf.s F_CS6 = R_TMP6
-       // sqrt coefficient cs5 = 7/8
-       shl R_TMP3 = R_TMP3, 16;;
-}
-
-
-{.mmi
-       // sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
-       setf.exp F_CS3 = R_TMP4
-       // r3 = pointer to polynomial coefficients
-       addl r3 = @ltoff(poly_coeffs), gp
-       // sqrt coefficient cs4 = -5/8
-       shl R_TMP5 = R_TMP5, 16;;
-}
-
-
-{.mfi
-       // sqrt coefficient cs5 = 7/8
-       setf.s F_CS5 = R_TMP3
-       // d = s-t
-       fms.s1 F_D = f8, f1, F_T
-       // set p6 = 1 if s<0, p11 = 1 if s> = 0
-       cmp.ge p6, p11 = R_EXP, R_DBL_S
-}
-
-{.mfi
-       // r3 = load start address to polynomial coefficients
-       ld8 r3 = [r3]
-       // s+t
-       fma.s1 F_S2T2 = f8, f1, F_T
-       nop.i 0;;
-}
-
-
-{.mfi
-       // sqrt coefficient cs4 = -5/8
-       setf.s F_CS4 = R_TMP5
-       // s^2-t^2
-       fma.s1 F_S2T2 = F_S2T2, F_D, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       // load C3
-       ldfe F_C3 = [r3], 16
-       // 0.5/(1-t^2) = 2^{-64}*(2^63/(1-t^2))
-       fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
-       nop.i 0;;
-}
-
-{.mfi
-       // load C_5
-       ldfe F_C5 = [r3], 16
-       // set correct exponent for sqrt(1-t^2)
-       fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       // load C_7, C_9
-       ldfpd F_C7, F_C9 = [r3]
-       // x = -(s^2-t^2)/(1-t^2)/2
-       fnma.s1 F_X = F_INV_1T2, F_S2T2, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       // load asin(t)_high, asin(t)_low
-       ldfpd F_ATHI, F_ATLO = [r2]
-       // t*sqrt(1-t^2)
-       fma.s1 F_TSQRT = F_T, F_SQRT_1T2, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // cs9*x+cs8
-       fma.s1 F_S89 = F_CS9, F_X, F_CS8
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // cs7*x+cs6
-       fma.s1 F_S67 = F_CS7, F_X, F_CS6
-       nop.i 0;;
-}
-
-{.mfi
-       nop.m 0
-       // cs5*x+cs4
-       fma.s1 F_S45 = F_CS5, F_X, F_CS4
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // x*x
-       fma.s1 F_X2 = F_X, F_X, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (s-t)-t*x
-       fnma.s1 F_DTX = F_T, F_X, F_D
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // cs3*x+cs2 (cs2 = -0.5 = -cs3)
-       fms.s1 F_S23 = F_CS3, F_X, F_CS3
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // cs9*x^3+cs8*x^2+cs7*x+cs6
-       fma.s1 F_S69 = F_S89, F_X2, F_S67
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // x^4
-       fma.s1 F_X4 = F_X2, F_X2, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // t*sqrt(1-t^2)*x^2
-       fma.s1 F_TSQRT = F_TSQRT, F_X2, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // cs5*x^3+cs4*x^2+cs3*x+cs2
-       fma.s1 F_S25 = F_S45, F_X2, F_S23
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // ((s-t)-t*x)*sqrt(1-t^2)
-       fma.s1 F_DTX = F_DTX, F_SQRT_1T2, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // if sign is negative, negate table values: asin(t)_low
- (p6) fnma.s1 F_ATLO = F_ATLO, f1, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // PS29 = cs9*x^7+..+cs5*x^3+cs4*x^2+cs3*x+cs2
-       fma.s1 F_S29 = F_S69, F_X4, F_S25
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // if sign is negative, negate table values: asin(t)_high
- (p6) fnma.s1 F_ATHI = F_ATHI, f1, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // R = ((s-t)-t*x)*sqrt(1-t^2)-t*sqrt(1-t^2)*x^2*PS29
-       fnma.s1 F_R = F_S29, F_TSQRT, F_DTX
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // R^2
-       fma.s1 F_R2 = F_R, F_R, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c7+c9*R^2
-       fma.s1 F_P79 = F_C9, F_R2, F_C7
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c3+c5*R^2
-       fma.s1 F_P35 = F_C5, F_R2, F_C3
-       nop.i 0;;
-}
-
-{.mfi
-       nop.m 0
-       // R^3
-       fma.s1 F_R4 = F_R2, F_R2, f0
-       nop.i 0;;
-}
-
-{.mfi
-       nop.m 0
-       // R^3
-       fma.s1 F_R3 = F_R2, F_R, f0
-       nop.i 0;;
-}
-
-
-
-{.mfi
-       nop.m 0
-       // c3+c5*R^2+c7*R^4+c9*R^6
-       fma.s1 F_P39 = F_P79, F_R4, F_P35
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
-       fma.s1 F_P39 = F_P39, F_R3, F_ATLO
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
-       fma.s1 F_P39 = F_P39, f1, F_R
-       nop.i 0;;
-}
-
-
-{.mfb
-       nop.m 0
-       // result = asin(t)_high+R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
-       fma.s0 f8 = F_ATHI, f1, F_P39
-       // return
-       br.ret.sptk b0;;
-}
-
-
-
-
-LARGE_S:
-
-{.mfi
-       // bias-1
-       mov R_TMP3 = 0xffff - 1
-       // y ~ 1/sqrt(1-s^2)
-       frsqrta.s1 F_Y, p7 = F_1S2
-       // c9 = 55*13*17/128
-       mov R_TMP4 = 0x10af7b
-}
-
-{.mlx
-       // c8 = -33*13*15/128
-       mov R_TMP5 = 0x184923
-       movl R_TMP2 = 0xff00000000000000;;
-}
-
-{.mfi
-       // set p6 = 1 if s<0, p11 = 1 if s>0
-       cmp.ge p6, p11 = R_EXP, R_DBL_S
-       // 1-s^2
-       fnma.s1 F_1S2 = f8, f8, f1
-       // set p9 = 1
-       cmp.eq p9, p0 = r0, r0;;
-}
-
-
-{.mfi
-       // load 0.5
-       setf.exp F_05 = R_TMP3
-       // (1-s^2) rounded to single precision
-       fnma.s.s1 F_1S2_S = f8, f8, f1
-       // c9 = 55*13*17/128
-       shl R_TMP4 = R_TMP4, 10
-}
-
-{.mlx
-       // AND mask for getting t ~ sqrt(1-s^2)
-       setf.sig F_ANDMASK = R_TMP2
-       // OR mask
-       movl R_TMP2 = 0x0100000000000000;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (s^2)_s
-       fma.s.s1 F_S2 = f8, f8, f0
-       nop.i 0;;
-}
-
-
-{.mmi
-       // c9 = 55*13*17/128
-       setf.s F_CS9 = R_TMP4
-       // c7 = 33*13/16
-       mov R_TMP4 = 0x41d68
-       // c8 = -33*13*15/128
-       shl R_TMP5 = R_TMP5, 11;;
-}
-
-
-{.mfi
-       setf.sig F_ORMASK = R_TMP2
-       // y^2
-       fma.s1 F_Y2 = F_Y, F_Y, f0
-       // c7 = 33*13/16
-       shl R_TMP4 = R_TMP4, 12
-}
-
-{.mfi
-       // c6 = -33*7/16
-       mov R_TMP6 = 0xc1670
-       // y' ~ sqrt(1-s^2)
-       fma.s1 F_T1 = F_Y, F_1S2, f0
-       // c5 = 63/8
-       mov R_TMP7 = 0x40fc;;
-}
-
-
-{.mlx
-       // load c8 = -33*13*15/128
-       setf.s F_CS8 = R_TMP5
-       // c4 = -35/8
-       movl R_TMP5 = 0xc08c0000;;
-}
-
-{.mfi
-       // r3 = pointer to polynomial coefficients
-       addl r3 = @ltoff(poly_coeffs), gp
-       // 1-(1-s^2)_s
-       fnma.s1 F_DS = F_1S2_S, f1, f1
-       // p9 = 0 if p7 = 1 (p9 = 1 for special cases only)
- (p7) cmp.ne p9, p0 = r0, r0
-}
-
-{.mlx
-       // load c7 = 33*13/16
-       setf.s F_CS7 = R_TMP4
-       // c3 = 5/2
-       movl R_TMP4 = 0x40200000;;
-}
-
-
-{.mfi
-       nop.m 0
-       // 1-(s^2)_s
-       fnma.s1 F_S_1S2S = F_S2, f1, f1
-       nop.i 0
-}
-
-{.mlx
-       // load c4 = -35/8
-       setf.s F_CS4 = R_TMP5
-       // c2 = -3/2
-       movl R_TMP5 = 0xbfc00000;;
-}
-
-
-{.mfi
-       // load c3 = 5/2
-       setf.s F_CS3 = R_TMP4
-       // x = (1-s^2)_s*y^2-1
-       fms.s1 F_X = F_1S2_S, F_Y2, f1
-       // c6 = -33*7/16
-       shl R_TMP6 = R_TMP6, 12
-}
-
-{.mfi
-       nop.m 0
-       // y^2/2
-       fma.s1 F_Y2_2 = F_Y2, F_05, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       // load c6 = -33*7/16
-       setf.s F_CS6 = R_TMP6
-       // eliminate lower bits from y'
-       fand F_T = F_T1, F_ANDMASK
-       // c5 = 63/8
-       shl R_TMP7 = R_TMP7, 16
-}
-
-{.mfb
-       // r3 = load start address to polynomial coefficients
-       ld8 r3 = [r3]
-       // 1-(1-s^2)_s-s^2
-       fnma.s1 F_DS = f8, f8, F_DS
-       // p9 = 1 if s is a special input (NaN, or |s|> = 1)
- (p9) br.cond.spnt ASINL_SPECIAL_CASES;;
-}
-
-{.mmf
-       // get exponent, significand of y' (in single prec.)
-       getf.s R_TMP = F_T1
-       // load c3 = -3/2
-       setf.s F_CS2 = R_TMP5
-       // y*(1-s^2)
-       fma.s1 F_Y1S2 = F_Y, F_1S2, f0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // x' = (y^2/2)*(1-(s^2)_s)-0.5
-       fms.s1 F_XL = F_Y2_2, F_S_1S2S, F_05
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // s^2-(s^2)_s
-       fms.s1 F_S_DS2 = f8, f8, F_S2
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // if s<0, set s = -s
- (p6) fnma.s1 f8 = f8, f1, f0
-       nop.i 0;;
-}
-
-{.mfi
-       // load c5 = 63/8
-       setf.s F_CS5 = R_TMP7
-       // x = (1-s^2)_s*y^2-1+(1-(1-s^2)_s-s^2)*y^2
-       fma.s1 F_X = F_DS, F_Y2, F_X
-       // for t = 2^k*1.b1 b2.., get 7-k|b1.. b6
-       extr.u R_INDEX = R_TMP, 17, 9;;
-}
-
-
-{.mmi
-       // index = (4-exponent)|b1 b2.. b6
-       sub R_INDEX = R_INDEX, R_BIAS
-       nop.m 0
-       // get exponent of y
-       shr.u R_TMP2 = R_TMP, 23;;
-}
-
-{.mmi
-       // load C3
-       ldfe F_C3 = [r3], 16
-       // set p8 = 1 if y'<2^{-4}
-       cmp.gt p8, p0 = 0x7b, R_TMP2
-       // shift R_INDEX by 5
-       shl R_INDEX = R_INDEX, 5;;
-}
-
-
-{.mfb
-       // get table index for sqrt(1-t^2)
-       add r2 = r2, R_INDEX
-       // get t = 2^k*1.b1 b2.. b7 1
-       for F_T = F_T, F_ORMASK
- (p8) br.cond.spnt VERY_LARGE_INPUT;;
-}
-
-
-
-{.mmf
-       // load C5
-       ldfe F_C5 = [r3], 16
-       // load 1/(1-t^2)
-       ldfp8 F_INV_1T2, F_SQRT_1T2 = [r2], 16
-       // x = ((1-s^2)*y^2-1)/2
-       fma.s1 F_X = F_X, F_05, f0;;
-}
-
-
-
-{.mmf
-       nop.m 0
-       // C7, C9
-       ldfpd F_C7, F_C9 = [r3], 16
-       // set correct exponent for t
-       fmerge.se F_T = F_T1, F_T;;
-}
-
-
-
-{.mfi
-       // pi/2 (low, high)
-       ldfpd F_PI2_LO, F_PI2_HI = [r3]
-       // c9*x+c8
-       fma.s1 F_S89 = F_X, F_CS9, F_CS8
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // x^2
-       fma.s1 F_X2 = F_X, F_X, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // y*(1-s^2)*x
-       fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c7*x+c6
-       fma.s1 F_S67 = F_X, F_CS7, F_CS6
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // 1-x
-       fnma.s1 F_1X = F_X, f1, f1
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c3*x+c2
-       fma.s1 F_S23 = F_X, F_CS3, F_CS2
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // 1-t^2
-       fnma.s1 F_1T2 = F_T, F_T, f1
-       nop.i 0
-}
-
-{.mfi
-       // load asin(t)_high, asin(t)_low
-       ldfpd F_ATHI, F_ATLO = [r2]
-       // c5*x+c4
-       fma.s1 F_S45 = F_X, F_CS5, F_CS4
-       nop.i 0;;
-}
-
-
-
-{.mfi
-       nop.m 0
-       // t*s
-       fma.s1 F_TS = F_T, f8, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // 0.5/(1-t^2)
-       fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
-       nop.i 0;;
-}
-
-{.mfi
-       nop.m 0
-       // z~sqrt(1-t^2), rounded to 24 significant bits
-       fma.s.s1 F_Z = F_SQRT_1T2, F_2M64, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // sqrt(1-t^2)
-       fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // y*(1-s^2)*x^2
-       fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // x^4
-       fma.s1 F_X4 = F_X2, F_X2, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // s*t rounded to 24 significant bits
-       fma.s.s1 F_TSS = F_T, f8, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c9*x^3+..+c6
-       fma.s1 F_S69 = F_X2, F_S89, F_S67
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // ST = (t^2-1+s^2) rounded to 24 significant bits
-       fms.s.s1 F_ST = f8, f8, F_1T2
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c5*x^3+..+c2
-       fma.s1 F_S25 = F_X2, F_S45, F_S23
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // 0.25/(1-t^2)
-       fma.s1 F_INV1T2_2 = F_05, F_INV_1T2, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // t*s-sqrt(1-t^2)*(1-s^2)*y
-       fnma.s1 F_TS = F_Y1S2, F_SQRT_1T2, F_TS
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // z*0.5/(1-t^2)
-       fma.s1 F_ZE = F_INV_1T2, F_SQRT_1T2, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // z^2+t^2-1
-       fms.s1 F_DZ0 = F_Z, F_Z, F_1T2
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (1-s^2-(1-s^2)_s)*x
-       fma.s1 F_DS2X = F_X, F_DS, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // t*s-(t*s)_s
-       fms.s1 F_DTS = F_T, f8, F_TSS
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c9*x^7+..+c2
-       fma.s1 F_S29 = F_X4, F_S69, F_S25
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // y*z
-       fma.s1 F_YZ = F_Z, F_Y, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // t^2
-       fma.s1 F_T2 = F_T, F_T, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // 1-t^2+ST
-       fma.s1 F_1T2_ST = F_ST, f1, F_1T2
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // y*(1-s^2)(1-x)
-       fma.s1 F_Y1S2_1X = F_Y1S2, F_1X, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // dz ~ sqrt(1-t^2)-z
-       fma.s1 F_DZ = F_DZ0, F_ZE, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // -1+correction for sqrt(1-t^2)-z
-       fnma.s1 F_CORR = F_INV1T2_2, F_DZ0, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (PS29*x^2+x)*y*(1-s^2)
-       fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // z*y*(1-s^2)_s
-       fma.s1 F_ZY1S2S = F_YZ, F_1S2_S, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // s^2-(1-t^2+ST)
-       fms.s1 F_1T2_ST = f8, f8, F_1T2_ST
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x
-       fma.s1 F_DTS = F_YZ, F_DS2X, F_DTS
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // dz*y*(1-s^2)*(1-x)
-       fma.s1 F_DZ_TERM = F_DZ, F_Y1S2_1X, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // R = t*s-sqrt(1-t^2)*(1-s^2)*y+sqrt(1-t^2)*(1-s^2)*y*PS19
-       // (used for polynomial evaluation)
-       fma.s1 F_R = F_S19, F_SQRT_1T2, F_TS
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (PS29*x^2)*y*(1-s^2)
-       fma.s1 F_S29 = F_Y1S2X2, F_S29, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // apply correction to dz*y*(1-s^2)*(1-x)
-       fma.s1 F_DZ_TERM = F_DZ_TERM, F_CORR, F_DZ_TERM
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // R^2
-       fma.s1 F_R2 = F_R, F_R, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x+dz*y*(1-s^2)*(1-x)
-       fma.s1 F_DZ_TERM = F_DZ_TERM, f1, F_DTS
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c7+c9*R^2
-       fma.s1 F_P79 = F_C9, F_R2, F_C7
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c3+c5*R^2
-       fma.s1 F_P35 = F_C5, F_R2, F_C3
-       nop.i 0;;
-}
-
-{.mfi
-       nop.m 0
-       // asin(t)_low-(pi/2)_low
-       fms.s1 F_ATLO = F_ATLO, f1, F_PI2_LO
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // R^4
-       fma.s1 F_R4 = F_R2, F_R2, f0
-       nop.i 0;;
-}
-
-{.mfi
-       nop.m 0
-       // R^3
-       fma.s1 F_R3 = F_R2, F_R, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (t*s)_s-t^2*y*z
-       fnma.s1 F_TSS = F_T2, F_YZ, F_TSS
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)
-       fma.s1 F_DZ_TERM = F_YZ, F_1T2_ST, F_DZ_TERM
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (pi/2)_hi-asin(t)_hi
-       fms.s1 F_ATHI = F_PI2_HI, f1, F_ATHI
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c3+c5*R^2+c7*R^4+c9*R^6
-       fma.s1 F_P39 = F_P79, F_R4, F_P35
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)+
-       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29
-       fma.s1 F_DZ_TERM = F_SQRT_1T2, F_S29, F_DZ_TERM
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (t*s)_s-t^2*y*z+z*y*ST
-       fma.s1 F_TSS = F_YZ, F_ST, F_TSS
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // -asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
-       fms.s1 F_P39 = F_P39, F_R3, F_ATLO
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // if s<0, change sign of F_ATHI
- (p6) fnma.s1 F_ATHI = F_ATHI, f1, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
-       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 +
-       // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
-       fma.s1 F_DZ_TERM = F_P39, f1, F_DZ_TERM
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
-       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
-       // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
-       fma.s1 F_DZ_TERM = F_ZY1S2S, F_X, F_DZ_TERM
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
-       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
-       // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) +
-       // + (t*s)_s-t^2*y*z+z*y*ST
-       fma.s1 F_DZ_TERM = F_TSS, f1, F_DZ_TERM
-       nop.i 0;;
-}
-
-
-.pred.rel "mutex", p6, p11
-{.mfi
-       nop.m 0
-       // result: add high part of pi/2-table value
-       // s>0 in this case
- (p11) fma.s0 f8 = F_DZ_TERM, f1, F_ATHI
-       nop.i 0
-}
-
-{.mfb
-       nop.m 0
-       // result: add high part of pi/2-table value
-       // if s<0
- (p6) fnma.s0 f8 = F_DZ_TERM, f1, F_ATHI
-       br.ret.sptk b0;;
-}
-
-
-
-
-
-
-SMALL_S:
-
-       // use 15-term polynomial approximation
-
-{.mmi
-       // r3 = pointer to polynomial coefficients
-       addl r3 = @ltoff(poly_coeffs), gp;;
-       // load start address for coefficients
-       ld8 r3 = [r3]
-       mov R_TMP = 0x3fbf;;
-}
-
-
-{.mmi
-       add r2 = 64, r3
-       ldfe F_C3 = [r3], 16
-       // p7 = 1 if |s|<2^{-64} (exponent of s<bias-64)
-       cmp.lt p7, p0 = R_EXP0, R_TMP;;
-}
-
-{.mmf
-       ldfe F_C5 = [r3], 16
-       ldfpd F_C11, F_C13 = [r2], 16
-	   // 2^{-128}
-       fma.s1 F_2M128 = F_2M64, F_2M64, f0;;
-}
-
-{.mmf
-       ldfpd F_C7, F_C9 = [r3]
-       ldfpd F_C15, F_C17 = [r2]
-       // if |s|<2^{-64}, return s+2^{-128}*s
- (p7) fma.s0 f8 = f8, F_2M128, f8;;
-}
-
-
-
-{.mfb
-       nop.m 0
-       // s^2
-       fma.s1 F_R2 = f8, f8, f0
-       // if |s|<2^{-64}, return s
- (p7) br.ret.spnt b0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // s^3
-       fma.s1 F_R3 = f8, F_R2, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // s^4
-       fma.s1 F_R4 = F_R2, F_R2, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c3+c5*s^2
-       fma.s1 F_P35 = F_C5, F_R2, F_C3
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c11+c13*s^2
-       fma.s1 F_P1113 = F_C13, F_R2, F_C11
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c7+c9*s^2
-       fma.s1 F_P79 = F_C9, F_R2, F_C7
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c15+c17*s^2
-       fma.s1 F_P1517 = F_C17, F_R2, F_C15
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // s^8
-       fma.s1 F_R8 = F_R4, F_R4, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c3+c5*s^2+c7*s^4+c9*s^6
-       fma.s1 F_P39 = F_P79, F_R4, F_P35
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c11+c13*s^2+c15*s^4+c17*s^6
-       fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c3+..+c17*s^14
-       fma.s1 F_P317 = F_R8, F_P1117, F_P39
-       nop.i 0;;
-}
-
-
-{.mfb
-       nop.m 0
-       // result
-       fma.s0 f8 = F_P317, F_R3, f8
-       br.ret.sptk b0;;
-}
-
-
-{.mfb
-       nop.m 0
-       fma.s0 f8 = F_P317, F_R3, f0//F_P317, F_R3, F_S29
-       // nop.f 0//fma.s0 f8 = f13, f6, f0
-       br.ret.sptk b0;;
-}
-
-
-
-
-
-       VERY_LARGE_INPUT:
-
-{.mfi
-       nop.m 0
-       // s rounded to 24 significant bits
-       fma.s.s1 F_S = f8, f1, f0
-       nop.i 0
-}
-
-{.mfi
-       // load C5
-       ldfe F_C5 = [r3], 16
-       // x = ((1-(s^2)_s)*y^2-1)/2-(s^2-(s^2)_s)*y^2/2
-       fnma.s1 F_X = F_S_DS2, F_Y2_2, F_XL
-       nop.i 0;;
-}
-
-
-
-{.mmf
-       nop.m 0
-       // C7, C9
-       ldfpd F_C7, F_C9 = [r3], 16
-       nop.f 0;;
-}
-
-
-
-{.mfi
-       // pi/2 (low, high)
-       ldfpd F_PI2_LO, F_PI2_HI = [r3], 16
-       // c9*x+c8
-       fma.s1 F_S89 = F_X, F_CS9, F_CS8
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // x^2
-       fma.s1 F_X2 = F_X, F_X, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // y*(1-s^2)*x
-       fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
-       nop.i 0
-}
-
-{.mfi
-       // C11, C13
-       ldfpd F_C11, F_C13 = [r3], 16
-       // c7*x+c6
-       fma.s1 F_S67 = F_X, F_CS7, F_CS6
-       nop.i 0;;
-}
-
-
-{.mfi
-       // C15, C17
-       ldfpd F_C15, F_C17 = [r3], 16
-       // c3*x+c2
-       fma.s1 F_S23 = F_X, F_CS3, F_CS2
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c5*x+c4
-       fma.s1 F_S45 = F_X, F_CS5, F_CS4
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (s_s)^2
-       fma.s1 F_DS = F_S, F_S, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // 1-(s_s)^2
-       fnma.s1 F_1S2_S = F_S, F_S, f1
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // y*(1-s^2)*x^2
-       fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // x^4
-       fma.s1 F_X4 = F_X2, F_X2, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c9*x^3+..+c6
-       fma.s1 F_S69 = F_X2, F_S89, F_S67
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c5*x^3+..+c2
-       fma.s1 F_S25 = F_X2, F_S45, F_S23
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // ((s_s)^2-s^2)
-       fnma.s1 F_DS = f8, f8, F_DS
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // (pi/2)_high-y*(1-(s_s)^2)
-       fnma.s1 F_HI = F_Y, F_1S2_S, F_PI2_HI
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c9*x^7+..+c2
-       fma.s1 F_S29 = F_X4, F_S69, F_S25
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // -(y*(1-(s_s)^2))_high
-       fms.s1 F_1S2_HI = F_HI, f1, F_PI2_HI
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (PS29*x^2+x)*y*(1-s^2)
-       fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // y*(1-(s_s)^2)-(y*(1-s^2))_high
-       fma.s1 F_DS2 = F_Y, F_1S2_S, F_1S2_HI
-       nop.i 0;;
-}
-
-
-
-{.mfi
-       nop.m 0
-       // R ~ sqrt(1-s^2)
-       // (used for polynomial evaluation)
-       fnma.s1 F_R = F_S19, f1, F_Y1S2
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // y*(1-s^2)-(y*(1-s^2))_high
-       fma.s1 F_DS2 = F_Y, F_DS, F_DS2
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // (pi/2)_low+(PS29*x^2)*y*(1-s^2)
-       fma.s1 F_S29 = F_Y1S2X2, F_S29, F_PI2_LO
-       nop.i 0;;
-}
-
-
-
-{.mfi
-       nop.m 0
-       // R^2
-       fma.s1 F_R2 = F_R, F_R, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (pi/2)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)
-       fms.s1 F_S29 = F_S29, f1, F_DS2
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c7+c9*R^2
-       fma.s1 F_P79 = F_C9, F_R2, F_C7
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c3+c5*R^2
-       fma.s1 F_P35 = F_C5, F_R2, F_C3
-       nop.i 0;;
-}
-
-
-
-{.mfi
-       nop.m 0
-       // R^4
-       fma.s1 F_R4 = F_R2, F_R2, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // R^3
-       fma.s1 F_R3 = F_R2, F_R, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c11+c13*R^2
-       fma.s1 F_P1113 = F_C13, F_R2, F_C11
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c15+c17*R^2
-       fma.s1 F_P1517 = F_C17, F_R2, F_C15
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (pi/2)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)+y*(1-s^2)*x
-       fma.s1 F_S29 = F_Y1S2, F_X, F_S29
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c11+c13*R^2+c15*R^4+c17*R^6
-       fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // c3+c5*R^2+c7*R^4+c9*R^6
-       fma.s1 F_P39 = F_P79, F_R4, F_P35
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // R^8
-       fma.s1 F_R8 = F_R4, F_R4, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // c3+c5*R^2+c7*R^4+c9*R^6+..+c17*R^14
-       fma.s1 F_P317 = F_P1117, F_R8, F_P39
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // (pi/2)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
-       // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
-       fnma.s1 F_S29 = F_P317, F_R3, F_S29
-       nop.i 0;;
-}
-
-{.mfi
-       nop.m 0
-       // set sign
-  (p6) fnma.s1 F_S29 = F_S29, f1, f0
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-  (p6) fnma.s1 F_HI = F_HI, f1, f0
-       nop.i 0;;
-}
-
-
-{.mfb
-       nop.m 0
-       // Result:
-       // (pi/2)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
-       // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
-       // +(pi/2)_high-(y*(1-s^2))_high
-       fma.s0 f8 = F_S29, f1, F_HI
-       br.ret.sptk b0;;
-}
-
-
-
-
-
-
-
-
-
-       ASINL_SPECIAL_CASES:
-
-{.mfi
-       alloc r32 = ar.pfs, 1, 4, 4, 0
-       // check if the input is a NaN, or unsupported format
-       // (i.e. not infinity or normal/denormal)
-       fclass.nm p7, p8 = f8, 0x3f
-       // pointer to pi/2
-       add r3 = 48, r3;;
-}
-
-
-{.mfi
-       // load pi/2
-       ldfpd F_PI2_HI, F_PI2_LO = [r3]
-       // get |s|
-       fmerge.s F_S = f0, f8
-       nop.i 0
-}
-
-{.mfb
-       nop.m 0
-       // if NaN, quietize it, and return
- (p7) fma.s0 f8 = f8, f1, f0
- (p7) br.ret.spnt b0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // |s| = 1 ?
-       fcmp.eq.s0 p9, p0 = F_S, f1
-       nop.i 0
-}
-
-{.mfi
-       nop.m 0
-       // load FR_X
-       fma.s1 FR_X = f8, f1, f0
-       // load error tag
-       mov GR_Parameter_TAG = 60;;
-}
-
-
-{.mfb
-       nop.m 0
-       // change sign if s = -1
- (p6)  fnma.s1 F_PI2_HI = F_PI2_HI, f1, f0
-       nop.b 0
-}
-
-{.mfb
-       nop.m 0
-       // change sign if s = -1
- (p6)  fnma.s1 F_PI2_LO = F_PI2_LO, f1, f0
-       nop.b 0;;
-}
-
-{.mfb
-       nop.m 0
-       // if s = 1, result is pi/2
- (p9) fma.s0 f8 = F_PI2_HI, f1, F_PI2_LO
-       // return if |s| = 1
- (p9) br.ret.sptk b0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // get Infinity
-       frcpa.s1 FR_RESULT, p0 = f1, f0
-       nop.i 0;;
-}
-
-
-{.mfi
-       nop.m 0
-       // return QNaN indefinite (0*Infinity)
-       fma.s0 FR_RESULT = f0, FR_RESULT, f0
-       nop.i 0;;
-}
-
-
-GLOBAL_LIBM_END(asinl)
-
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-// (1)
-{ .mfi
-        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
-        nop.f 0
-.save   ar.pfs,GR_SAVE_PFS
-        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
-}
-{ .mfi
-.fframe 64
-        add sp=-64,sp                          // Create new stack
-        nop.f 0
-        mov GR_SAVE_GP=gp                      // Save gp
-};;
-
-
-// (2)
-{ .mmi
-        stfe [GR_Parameter_Y] = f1,16         // Store Parameter 2 on stack
-        add GR_Parameter_X = 16,sp            // Parameter 1 address
-.save   b0, GR_SAVE_B0
-        mov GR_SAVE_B0=b0                     // Save b0
-};;
-
-.body
-// (3)
-{ .mib
-        stfe [GR_Parameter_X] = FR_X              // Store Parameter 1 on stack
-        add   GR_Parameter_RESULT = 0,GR_Parameter_Y
-        nop.b 0                                 // Parameter 3 address
-}
-{ .mib
-        stfe [GR_Parameter_Y] = FR_RESULT             // Store Parameter 3 on stack
-        add   GR_Parameter_Y = -16,GR_Parameter_Y
-        br.call.sptk b0=__libm_error_support#   // Call error handling function
-};;
-{ .mmi
-        nop.m 0
-        nop.m 0
-        add   GR_Parameter_RESULT = 48,sp
-};;
-
-// (4)
-{ .mmi
-        ldfe  f8 = [GR_Parameter_RESULT]       // Get return result off stack
-.restore sp
-        add   sp = 64,sp                       // Restore stack pointer
-        mov   b0 = GR_SAVE_B0                  // Restore return address
-};;
-
-{ .mib
-        mov   gp = GR_SAVE_GP                  // Restore gp
-        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
-        br.ret.sptk     b0                     // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type   __libm_error_support#,@function
-.global __libm_error_support#
-
-
-
-
-