diff options
author | Ulrich Drepper <drepper@gmail.com> | 2012-01-07 11:19:05 -0500 |
---|---|---|
committer | Ulrich Drepper <drepper@gmail.com> | 2012-01-07 11:19:05 -0500 |
commit | d75a0a62b12c35ee85f786d5f8d155ab39909411 (patch) | |
tree | c3479d23878ef4ab05629d4a60f4f7623269c1dd /sysdeps/ia64/fpu/e_acosl.S | |
parent | dcc9756b5bfbb2b97f73bad863d7e1c4002bea98 (diff) | |
download | glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.gz glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.xz glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.zip |
Remove IA-64 support
Diffstat (limited to 'sysdeps/ia64/fpu/e_acosl.S')
-rw-r--r-- | sysdeps/ia64/fpu/e_acosl.S | 2552 |
1 files changed, 0 insertions, 2552 deletions
diff --git a/sysdeps/ia64/fpu/e_acosl.S b/sysdeps/ia64/fpu/e_acosl.S deleted file mode 100644 index 4fd345bedd..0000000000 --- a/sysdeps/ia64/fpu/e_acosl.S +++ /dev/null @@ -1,2552 +0,0 @@ -.file "acosl.s" - - -// Copyright (c) 2001 - 2003, Intel Corporation -// All rights reserved. -// -// Contributed 2001 by the Intel Numerics Group, Intel Corporation -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// -// * Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// -// * The name of Intel Corporation may not be used to endorse or promote -// products derived from this software without specific prior written -// permission. - -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS -// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY -// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING -// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -// Intel Corporation is the author of this code, and requests that all -// problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. -// -// History -//============================================================== -// 08/28/01 New version -// 05/20/02 Cleaned up namespace and sf0 syntax -// 02/06/03 Reordered header: .section, .global, .proc, .align -// -// API -//============================================================== -// long double acosl(long double) -// -// Overview of operation -//============================================================== -// Background -// -// Implementation -// -// For |s| in [2^{-4}, sqrt(2)/2]: -// Let t= 2^k*1.b1 b2..b6 1, where s= 2^k*1.b1 b2.. b52 -// acos(s)= pi/2-asin(t)-asin(r), where r= s*sqrt(1-t^2)-t*sqrt(1-s^2), i.e. -// r= (s-t)*sqrt(1-t^2)-t*sqrt(1-t^2)*(sqrt((1-s^2)/(1-t^2))-1) -// asin(r)-r evaluated as 9-degree polynomial (c3*r^3+c5*r^5+c7*r^7+c9*r^9) -// The 64-bit significands of sqrt(1-t^2), 1/(1-t^2) are read from the table, -// along with the high and low parts of asin(t) (stored as two double precision -// values) -// -// |s| in (sqrt(2)/2, sqrt(255/256)): -// Let t= 2^k*1.b1 b2..b6 1, where (1-s^2)*frsqrta(1-s^2)= 2^k*1.b1 b2..b6.. -// acos(|s|)= asin(t)-asin(r) -// acos(-|s|)=pi-asin(t)+asin(r), r= s*t-sqrt(1-s^2)*sqrt(1-t^2) -// To minimize accumulated errors, r is computed as -// r= (t*s)_s-t^2*y*z+z*y*(t^2-1+s^2)_s+z*y*(1-s^2)_s*x+z'*y*(1-s^2)*PS29+ -// +(t*s-(t*s)_s)+z*y*((t^2-1-(t^2-1+s^2)_s)+s^2)+z*y*(1-s^2-(1-s^2)_s)+ -// +ez*z'*y*(1-s^2)*(1-x), -// where y= frsqrta(1-s^2), z= (sqrt(1-t^2))_s (rounded to 24 significant bits) -// z'= sqrt(1-t^2), x= ((1-s^2)*y^2-1)/2 -// -// |s|<2^{-4}: evaluate asin(s) as 17-degree polynomial, return pi/2-asin(s) -// (or simply return pi/2-s, if|s|<2^{-64}) -// -// |s| in [sqrt(255/256), 1): acos(|s|)= asin(sqrt(1-s^2)) -// acos(-|s|)= pi-asin(sqrt(1-s^2)) -// use 17-degree polynomial for asin(sqrt(1-s^2)), -// 9-degree polynomial to evaluate sqrt(1-s^2) -// High order term is (pi)_high-(y*(1-s^2))_high, for s<0, -// or y*(1-s^2)_s, for s>0 -// - - - -// Registers used -//============================================================== -// f6-f15, f32-f36 -// r2-r3, r23-r23 -// p6, p7, p8, p12 -// - - - GR_SAVE_B0= r33 - GR_SAVE_PFS= r34 - GR_SAVE_GP= r35 // This reg. can safely be used - GR_SAVE_SP= r36 - - GR_Parameter_X= r37 - GR_Parameter_Y= r38 - GR_Parameter_RESULT= r39 - GR_Parameter_TAG= r40 - - FR_X= f10 - FR_Y= f1 - FR_RESULT= f8 - - - -RODATA - -.align 16 - -LOCAL_OBJECT_START(T_table) - -// stores 64-bit significand of 1/(1-t^2), 64-bit significand of sqrt(1-t^2), -// asin(t)_high (double precision), asin(t)_low (double precision) - -data8 0x80828692b71c4391, 0xff7ddcec2d87e879 -data8 0x3fb022bc0ae531a0, 0x3c9f599c7bb42af6 -data8 0x80869f0163d0b082, 0xff79cad2247914d3 -data8 0x3fb062dd26afc320, 0x3ca4eff21bd49c5c -data8 0x808ac7d5a8690705, 0xff75a89ed6b626b9 -data8 0x3fb0a2ff4a1821e0, 0x3cb7e33b58f164cc -data8 0x808f0112ad8ad2e0, 0xff7176517c2cc0cb -data8 0x3fb0e32279319d80, 0x3caee31546582c43 -data8 0x80934abba8a1da0a, 0xff6d33e949b1ed31 -data8 0x3fb12346b8101da0, 0x3cb8bfe463d087cd -data8 0x8097a4d3dbe63d8f, 0xff68e16571015c63 -data8 0x3fb1636c0ac824e0, 0x3c8870a7c5a3556f -data8 0x809c0f5e9662b3dd, 0xff647ec520bca0f0 -data8 0x3fb1a392756ed280, 0x3c964f1a927461ae -data8 0x80a08a5f33fadc66, 0xff600c07846a6830 -data8 0x3fb1e3b9fc19e580, 0x3c69eb3576d56332 -data8 0x80a515d91d71acd4, 0xff5b892bc475affa -data8 0x3fb223e2a2dfbe80, 0x3c6a4e19fd972fb6 -data8 0x80a9b1cfc86ff7cd, 0xff56f631062cf93d -data8 0x3fb2640c6dd76260, 0x3c62041160e0849e -data8 0x80ae5e46b78b0d68, 0xff5253166bc17794 -data8 0x3fb2a43761187c80, 0x3cac61651af678c0 -data8 0x80b31b417a4b756b, 0xff4d9fdb14463dc8 -data8 0x3fb2e46380bb6160, 0x3cb06ef23eeba7a1 -data8 0x80b7e8c3ad33c369, 0xff48dc7e1baf6738 -data8 0x3fb32490d0d910c0, 0x3caa05f480b300d5 -data8 0x80bcc6d0f9c784d6, 0xff4408fe9ad13e37 -data8 0x3fb364bf558b3820, 0x3cb01e7e403aaab9 -data8 0x80c1b56d1692492d, 0xff3f255ba75f5f4e -data8 0x3fb3a4ef12ec3540, 0x3cb4fe8fcdf5f5f1 -data8 0x80c6b49bc72ec446, 0xff3a319453ebd961 -data8 0x3fb3e5200d171880, 0x3caf2dc089b2b7e2 -data8 0x80cbc460dc4e0ae8, 0xff352da7afe64ac6 -data8 0x3fb425524827a720, 0x3cb75a855e7c6053 -data8 0x80d0e4c033bee9c4, 0xff301994c79afb32 -data8 0x3fb46585c83a5e00, 0x3cb3264981c019ab -data8 0x80d615bdb87556db, 0xff2af55aa431f291 -data8 0x3fb4a5ba916c73c0, 0x3c994251d94427b5 -data8 0x80db575d6291fd8a, 0xff25c0f84bae0cb9 -data8 0x3fb4e5f0a7dbdb20, 0x3cbee2fcc4c786cb -data8 0x80e0a9a33769e535, 0xff207c6cc0ec09fd -data8 0x3fb526280fa74620, 0x3c940656e5549b91 -data8 0x80e60c93498e32cd, 0xff1b27b703a19c98 -data8 0x3fb56660ccee2740, 0x3ca7082374d7b2cd -data8 0x80eb8031b8d4052d, 0xff15c2d6105c72f8 -data8 0x3fb5a69ae3d0b520, 0x3c7c4d46e09ac68a -data8 0x80f10482b25c6c8a, 0xff104dc8e0813ed4 -data8 0x3fb5e6d6586fec20, 0x3c9aa84ffd9b4958 -data8 0x80f6998a709c7cfb, 0xff0ac88e6a4ab926 -data8 0x3fb627132eed9140, 0x3cbced2cbbbe7d16 -data8 0x80fc3f4d3b657c44, 0xff053325a0c8a2ec -data8 0x3fb667516b6c34c0, 0x3c6489c5fc68595a -data8 0x8101f5cf67ed2af8, 0xfeff8d8d73dec2bb -data8 0x3fb6a791120f33a0, 0x3cbe12acf159dfad -data8 0x8107bd1558d6291f, 0xfef9d7c4d043df29 -data8 0x3fb6e7d226fabba0, 0x3ca386d099cd0dc7 -data8 0x810d95237e38766a, 0xfef411ca9f80b5f7 -data8 0x3fb72814ae53cc20, 0x3cb9f35731e71dd6 -data8 0x81137dfe55aa0e29, 0xfeee3b9dc7eef009 -data8 0x3fb76858ac403a00, 0x3c74df3dd959141a -data8 0x811977aa6a479f0f, 0xfee8553d2cb8122c -data8 0x3fb7a89e24e6b0e0, 0x3ca6034406ee42bc -data8 0x811f822c54bd5ef8, 0xfee25ea7add46a91 -data8 0x3fb7e8e51c6eb6a0, 0x3cb82f8f78e68ed7 -data8 0x81259d88bb4ffac1, 0xfedc57dc2809fb1d -data8 0x3fb8292d9700ad60, 0x3cbebb73c0e653f9 -data8 0x812bc9c451e5a257, 0xfed640d974eb6068 -data8 0x3fb8697798c5d620, 0x3ca2feee76a9701b -data8 0x813206e3da0f3124, 0xfed0199e6ad6b585 -data8 0x3fb8a9c325e852e0, 0x3cb9e88f2f4d0efe -data8 0x813854ec231172f9, 0xfec9e229dcf4747d -data8 0x3fb8ea1042932a00, 0x3ca5ff40d81f66fd -data8 0x813eb3e209ee858f, 0xfec39a7a9b36538b -data8 0x3fb92a5ef2f247c0, 0x3cb5e3bece4d6b07 -data8 0x814523ca796f56ce, 0xfebd428f72561efe -data8 0x3fb96aaf3b3281a0, 0x3cb7b9e499436d7c -data8 0x814ba4aa6a2d3ff9, 0xfeb6da672bd48fe4 -data8 0x3fb9ab011f819860, 0x3cb9168143cc1a7f -data8 0x81523686e29bbdd7, 0xfeb062008df81f50 -data8 0x3fb9eb54a40e3ac0, 0x3cb6e544197eb1e1 -data8 0x8158d964f7124614, 0xfea9d95a5bcbd65a -data8 0x3fba2ba9cd080800, 0x3ca9a717be8f7446 -data8 0x815f8d49c9d639e4, 0xfea34073551e1ac8 -data8 0x3fba6c009e9f9260, 0x3c741e989a60938a -data8 0x8166523a8b24f626, 0xfe9c974a367f785c -data8 0x3fbaac591d0661a0, 0x3cb2c1290107e57d -data8 0x816d283c793e0114, 0xfe95ddddb94166cb -data8 0x3fbaecb34c6ef600, 0x3c9c7d5fbaec405d -data8 0x81740f54e06d55bd, 0xfe8f142c93750c50 -data8 0x3fbb2d0f310cca00, 0x3cbc09479a9cbcfb -data8 0x817b07891b15cd5e, 0xfe883a3577e9fceb -data8 0x3fbb6d6ccf1455e0, 0x3cb9450bff4ee307 -data8 0x818210de91bba6c8, 0xfe814ff7162cf62f -data8 0x3fbbadcc2abb1180, 0x3c9227fda12a8d24 -data8 0x81892b5abb0f2bf9, 0xfe7a55701a8697b1 -data8 0x3fbbee2d48377700, 0x3cb6fad72acfe356 -data8 0x819057031bf7760e, 0xfe734a9f2dfa1810 -data8 0x3fbc2e902bc10600, 0x3cb4465b588d16ad -data8 0x819793dd479d4fbe, 0xfe6c2f82f643f68b -data8 0x3fbc6ef4d9904580, 0x3c8b9ac54823960d -data8 0x819ee1eedf76367a, 0xfe65041a15d8a92c -data8 0x3fbcaf5b55dec6a0, 0x3ca2b8d28a954db2 -data8 0x81a6413d934f7a66, 0xfe5dc8632be3477f -data8 0x3fbcefc3a4e727a0, 0x3c9380da83713ab4 -data8 0x81adb1cf21597d4b, 0xfe567c5cd44431d5 -data8 0x3fbd302dcae51600, 0x3ca995b83421756a -data8 0x81b533a9563310b8, 0xfe4f2005a78fb50f -data8 0x3fbd7099cc155180, 0x3caefa2f7a817d5f -data8 0x81bcc6d20cf4f373, 0xfe47b35c3b0caaeb -data8 0x3fbdb107acb5ae80, 0x3cb455fc372dd026 -data8 0x81c46b4f2f3d6e68, 0xfe40365f20b316d6 -data8 0x3fbdf177710518c0, 0x3cbee3dcc5b01434 -data8 0x81cc2126b53c1144, 0xfe38a90ce72abf36 -data8 0x3fbe31e91d439620, 0x3cb3e131c950aebd -data8 0x81d3e85ea5bd8ee2, 0xfe310b6419c9c33a -data8 0x3fbe725cb5b24900, 0x3c01d3fac6029027 -data8 0x81dbc0fd1637b9c1, 0xfe295d6340932d15 -data8 0x3fbeb2d23e937300, 0x3c6304cc44aeedd1 -data8 0x81e3ab082ad5a0a4, 0xfe219f08e03580b3 -data8 0x3fbef349bc2a77e0, 0x3cac1d2d6abe9c72 -data8 0x81eba6861683cb97, 0xfe19d0537a0946e2 -data8 0x3fbf33c332bbe020, 0x3ca0909dba4e96ca -data8 0x81f3b37d1afc9979, 0xfe11f1418c0f94e2 -data8 0x3fbf743ea68d5b60, 0x3c937fc12a2a779a -data8 0x81fbd1f388d4be45, 0xfe0a01d190f09063 -data8 0x3fbfb4bc1be5c340, 0x3cbf51a504b55813 -data8 0x820401efbf87e248, 0xfe020201fff9efea -data8 0x3fbff53b970d1e80, 0x3ca625444b260078 -data8 0x82106ad2ffdca049, 0xfdf5e3940a49135e -data8 0x3fc02aff52065460, 0x3c9125d113e22a57 -data8 0x8221343d6ea1d3e2, 0xfde581a45429b0a0 -data8 0x3fc06b84f8e03220, 0x3caccf362295894b -data8 0x82324434adbf99c2, 0xfdd4de1a001fb775 -data8 0x3fc0ac0ed1fe7240, 0x3cc22f676096b0af -data8 0x82439aee8d0c7747, 0xfdc3f8e8269d1f03 -data8 0x3fc0ec9cee9e4820, 0x3cca147e2886a628 -data8 0x825538a1d0fcb2f0, 0xfdb2d201a9b1ba66 -data8 0x3fc12d2f6006f0a0, 0x3cc72b36633bc2d4 -data8 0x82671d86345c5cee, 0xfda1695934d723e7 -data8 0x3fc16dc63789de60, 0x3cb11f9c47c7b83f -data8 0x827949d46a121770, 0xfd8fbee13cbbb823 -data8 0x3fc1ae618682e620, 0x3cce1b59020cef8e -data8 0x828bbdc61eeab9ba, 0xfd7dd28bff0c9f34 -data8 0x3fc1ef015e586c40, 0x3cafec043e0225ee -data8 0x829e7995fb6de9e1, 0xfd6ba44b823ee1ca -data8 0x3fc22fa5d07b90c0, 0x3cba905409caf8e3 -data8 0x82b17d7fa5bbc982, 0xfd5934119557883a -data8 0x3fc2704eee685da0, 0x3cb5ef21838a823e -data8 0x82c4c9bfc373d276, 0xfd4681cfcfb2c161 -data8 0x3fc2b0fcc9a5f3e0, 0x3ccc7952c5e0e312 -data8 0x82d85e93fba50136, 0xfd338d7790ca0f41 -data8 0x3fc2f1af73c6ba00, 0x3cbecf5f977d1ca9 -data8 0x82ec3c3af8c76b32, 0xfd2056f9fff97727 -data8 0x3fc33266fe6889a0, 0x3c9d329c022ebdb5 -data8 0x830062f46abf6022, 0xfd0cde480c43b327 -data8 0x3fc373237b34de60, 0x3cc95806d4928adb -data8 0x8314d30108ea35f0, 0xfcf923526c1562b2 -data8 0x3fc3b3e4fbe10520, 0x3cbc299fe7223d54 -data8 0x83298ca29434df97, 0xfce526099d0737ed -data8 0x3fc3f4ab922e4a60, 0x3cb59d8bb8fdbccc -data8 0x833e901bd93c7009, 0xfcd0e65de39f1f7c -data8 0x3fc435774fea2a60, 0x3c9ec18b43340914 -data8 0x8353ddb0b278aad8, 0xfcbc643f4b106055 -data8 0x3fc4764846ee80a0, 0x3cb90402efd87ed6 -data8 0x836975a60a70c52e, 0xfca79f9da4fab13a -data8 0x3fc4b71e8921b860, 0xbc58f23449ed6365 -data8 0x837f5841ddfa7a46, 0xfc92986889284148 -data8 0x3fc4f7fa2876fca0, 0xbc6294812bf43acd -data8 0x839585cb3e839773, 0xfc7d4e8f554ab12f -data8 0x3fc538db36ee6960, 0x3cb910b773d4c578 -data8 0x83abfe8a5466246f, 0xfc67c2012cb6fa68 -data8 0x3fc579c1c6953cc0, 0x3cc5ede909fc47fc -data8 0x83c2c2c861474d91, 0xfc51f2acf82041d5 -data8 0x3fc5baade9860880, 0x3cac63cdfc3588e5 -data8 0x83d9d2cfc2813637, 0xfc3be08165519325 -data8 0x3fc5fb9fb1e8e3a0, 0x3cbf7c8466578c29 -data8 0x83f12eebf397daac, 0xfc258b6ce6e6822f -data8 0x3fc63c9731f39d40, 0x3cb6d2a7ffca3e9e -data8 0x8408d76990b9296e, 0xfc0ef35db402af94 -data8 0x3fc67d947be9eec0, 0x3cb1980da09e6566 -data8 0x8420cc9659487cd7, 0xfbf81841c8082dc4 -data8 0x3fc6be97a21daf00, 0x3cc2ac8330e59aa5 -data8 0x84390ec132759ecb, 0xfbe0fa06e24cc390 -data8 0x3fc6ffa0b6ef05e0, 0x3ccc1a030fee56c4 -data8 0x84519e3a29df811a, 0xfbc9989a85ce0954 -data8 0x3fc740afcccca000, 0x3cc19692a5301ca6 -data8 0x846a7b527842d61b, 0xfbb1f3e9f8e45dc4 -data8 0x3fc781c4f633e2c0, 0x3cc0e98f3868a508 -data8 0x8483a65c8434b5f0, 0xfb9a0be244f4af45 -data8 0x3fc7c2e045b12140, 0x3cb2a8d309754420 -data8 0x849d1fabe4e97dd7, 0xfb81e070362116d1 -data8 0x3fc80401cddfd120, 0x3ca7a44544aa4ce6 -data8 0x84b6e795650817ea, 0xfb6971805af8411e -data8 0x3fc84529a16ac020, 0x3c9e3b709c7d6f94 -data8 0x84d0fe6f0589da92, 0xfb50beff0423a2f5 -data8 0x3fc88657d30c49e0, 0x3cc60d65a7f0a278 -data8 0x84eb649000a73014, 0xfb37c8d84414755c -data8 0x3fc8c78c758e8e80, 0x3cc94b2ee984c2b7 -data8 0x85061a50ccd13781, 0xfb1e8ef7eeaf764b -data8 0x3fc908c79bcba900, 0x3cc8540ae794a2fe -data8 0x8521200b1fb8916e, 0xfb05114998f76a83 -data8 0x3fc94a0958ade6c0, 0x3ca127f49839fa9c -data8 0x853c7619f1618bf6, 0xfaeb4fb898b65d19 -data8 0x3fc98b51bf2ffee0, 0x3c8c9ba7a803909a -data8 0x85581cd97f45e274, 0xfad14a3004259931 -data8 0x3fc9cca0e25d4ac0, 0x3cba458e91d3bf54 -data8 0x857414a74f8446b4, 0xfab7009ab1945a54 -data8 0x3fca0df6d551fe80, 0x3cc78ea1d329d2b2 -data8 0x85905de2341dea46, 0xfa9c72e3370d2fbc -data8 0x3fca4f53ab3b6200, 0x3ccf60dca86d57ef -data8 0x85acf8ea4e423ff8, 0xfa81a0f3e9fa0ee9 -data8 0x3fca90b777580aa0, 0x3ca4c4e2ec8a867e -data8 0x85c9e62111a92e7d, 0xfa668ab6dec711b1 -data8 0x3fcad2224cf814e0, 0x3c303de5980d071c -data8 0x85e725e947fbee97, 0xfa4b3015e883dbfe -data8 0x3fcb13943f7d5f80, 0x3cc29d4eefa5cb1e -data8 0x8604b8a7144cd054, 0xfa2f90fa9883a543 -data8 0x3fcb550d625bc6a0, 0x3c9e01a746152daf -data8 0x86229ebff69e2415, 0xfa13ad4e3dfbe1c1 -data8 0x3fcb968dc9195ea0, 0x3ccc091bd73ae518 -data8 0x8640d89acf78858c, 0xf9f784f9e5a1877b -data8 0x3fcbd815874eb160, 0x3cb5f4b89875e187 -data8 0x865f669fe390c7f5, 0xf9db17e65944eacf -data8 0x3fcc19a4b0a6f9c0, 0x3cc5c0bc2b0bbf14 -data8 0x867e4938df7dc45f, 0xf9be65fc1f6c2e6e -data8 0x3fcc5b3b58e061e0, 0x3cc1ca70df8f57e7 -data8 0x869d80d0db7e4c0c, 0xf9a16f237aec427a -data8 0x3fcc9cd993cc4040, 0x3cbae93acc85eccf -data8 0x86bd0dd45f4f8265, 0xf98433446a806e70 -data8 0x3fccde7f754f5660, 0x3cb22f70e64568d0 -data8 0x86dcf0b16613e37a, 0xf966b246a8606170 -data8 0x3fcd202d11620fa0, 0x3c962030e5d4c849 -data8 0x86fd29d7624b3d5d, 0xf948ec11a9d4c45b -data8 0x3fcd61e27c10c0a0, 0x3cc7083c91d59217 -data8 0x871db9b741dbe44a, 0xf92ae08c9eca4941 -data8 0x3fcda39fc97be7c0, 0x3cc9258579e57211 -data8 0x873ea0c3722d6af2, 0xf90c8f9e71633363 -data8 0x3fcde5650dd86d60, 0x3ca4755a9ea582a9 -data8 0x875fdf6fe45529e8, 0xf8edf92dc5875319 -data8 0x3fce27325d6fe520, 0x3cbc1e2b6c1954f9 -data8 0x878176321154e2bc, 0xf8cf1d20f87270b8 -data8 0x3fce6907cca0d060, 0x3cb6ca4804750830 -data8 0x87a36580fe6bccf5, 0xf8affb5e20412199 -data8 0x3fceaae56fdee040, 0x3cad6b310d6fd46c -data8 0x87c5add5417a5cb9, 0xf89093cb0b7c0233 -data8 0x3fceeccb5bb33900, 0x3cc16e99cedadb20 -data8 0x87e84fa9057914ca, 0xf870e64d40a15036 -data8 0x3fcf2eb9a4bcb600, 0x3cc75ee47c8b09e9 -data8 0x880b4b780f02b709, 0xf850f2c9fdacdf78 -data8 0x3fcf70b05fb02e20, 0x3cad6350d379f41a -data8 0x882ea1bfc0f228ac, 0xf830b926379e6465 -data8 0x3fcfb2afa158b8a0, 0x3cce0ccd9f829985 -data8 0x885252ff21146108, 0xf810394699fe0e8e -data8 0x3fcff4b77e97f3e0, 0x3c9b30faa7a4c703 -data8 0x88765fb6dceebbb3, 0xf7ef730f865f6df0 -data8 0x3fd01b6406332540, 0x3cdc5772c9e0b9bd -data8 0x88ad1f69be2cc730, 0xf7bdc59bc9cfbd97 -data8 0x3fd04cf8ad203480, 0x3caeef44fe21a74a -data8 0x88f763f70ae2245e, 0xf77a91c868a9c54e -data8 0x3fd08f23ce0162a0, 0x3cd6290ab3fe5889 -data8 0x89431fc7bc0c2910, 0xf73642973c91298e -data8 0x3fd0d1610f0c1ec0, 0x3cc67401a01f08cf -data8 0x8990573407c7738e, 0xf6f0d71d1d7a2dd6 -data8 0x3fd113b0c65d88c0, 0x3cc7aa4020fe546f -data8 0x89df0eb108594653, 0xf6aa4e6a05cfdef2 -data8 0x3fd156134ada6fe0, 0x3cc87369da09600c -data8 0x8a2f4ad16e0ed78a, 0xf662a78900c35249 -data8 0x3fd19888f43427a0, 0x3cc62b220f38e49c -data8 0x8a811046373e0819, 0xf619e180181d97cc -data8 0x3fd1db121aed7720, 0x3ca3ede7490b52f4 -data8 0x8ad463df6ea0fa2c, 0xf5cffb504190f9a2 -data8 0x3fd21daf185fa360, 0x3caafad98c1d6c1b -data8 0x8b294a8cf0488daf, 0xf584f3f54b8604e6 -data8 0x3fd2606046bf95a0, 0x3cdb2d704eeb08fa -data8 0x8b7fc95f35647757, 0xf538ca65c960b582 -data8 0x3fd2a32601231ec0, 0x3cc661619fa2f126 -data8 0x8bd7e588272276f8, 0xf4eb7d92ff39fccb -data8 0x3fd2e600a3865760, 0x3c8a2a36a99aca4a -data8 0x8c31a45bf8e9255e, 0xf49d0c68cd09b689 -data8 0x3fd328f08ad12000, 0x3cb9efaf1d7ab552 -data8 0x8c8d0b520a35eb18, 0xf44d75cd993cfad2 -data8 0x3fd36bf614dcc040, 0x3ccacbb590bef70d -data8 0x8cea2005d068f23d, 0xf3fcb8a23ab4942b -data8 0x3fd3af11a079a6c0, 0x3cd9775872cf037d -data8 0x8d48e837c8cd5027, 0xf3aad3c1e2273908 -data8 0x3fd3f2438d754b40, 0x3ca03304f667109a -data8 0x8da969ce732f3ac7, 0xf357c60202e2fd7e -data8 0x3fd4358c3ca032e0, 0x3caecf2504ff1a9d -data8 0x8e0baad75555e361, 0xf3038e323ae9463a -data8 0x3fd478ec0fd419c0, 0x3cc64bdc3d703971 -data8 0x8e6fb18807ba877e, 0xf2ae2b1c3a6057f7 -data8 0x3fd4bc6369fa40e0, 0x3cbb7122ec245cf2 -data8 0x8ed5843f4bda74d5, 0xf2579b83aa556f0c -data8 0x3fd4fff2af11e2c0, 0x3c9cfa2dc792d394 -data8 0x8f3d29862c861fef, 0xf1ffde2612ca1909 -data8 0x3fd5439a4436d000, 0x3cc38d46d310526b -data8 0x8fa6a81128940b2d, 0xf1a6f1bac0075669 -data8 0x3fd5875a8fa83520, 0x3cd8bf59b8153f8a -data8 0x901206c1686317a6, 0xf14cd4f2a730d480 -data8 0x3fd5cb33f8cf8ac0, 0x3c9502b5c4d0e431 -data8 0x907f4ca5fe9cf739, 0xf0f186784a125726 -data8 0x3fd60f26e847b120, 0x3cc8a1a5e0acaa33 -data8 0x90ee80fd34aeda5e, 0xf09504ef9a212f18 -data8 0x3fd65333c7e43aa0, 0x3cae5b029cb1f26e -data8 0x915fab35e37421c6, 0xf0374ef5daab5c45 -data8 0x3fd6975b02b8e360, 0x3cd5aa1c280c45e6 -data8 0x91d2d2f0d894d73c, 0xefd86321822dbb51 -data8 0x3fd6db9d05213b20, 0x3cbecf2c093ccd8b -data8 0x9248000249200009, 0xef7840021aca5a72 -data8 0x3fd71ffa3cc87fc0, 0x3cb8d273f08d00d9 -data8 0x92bf3a7351f081d2, 0xef16e42021d7cbd5 -data8 0x3fd7647318b1ad20, 0x3cbce099d79cdc46 -data8 0x93388a8386725713, 0xeeb44dfce6820283 -data8 0x3fd7a908093fc1e0, 0x3ccb033ec17a30d9 -data8 0x93b3f8aa8e653812, 0xee507c126774fa45 -data8 0x3fd7edb9803e3c20, 0x3cc10aedb48671eb -data8 0x94318d99d341ade4, 0xedeb6cd32f891afb -data8 0x3fd83287f0e9cf80, 0x3c994c0c1505cd2a -data8 0x94b1523e3dedc630, 0xed851eaa3168f43c -data8 0x3fd87773cff956e0, 0x3cda3b7bce6a6b16 -data8 0x95334fc20577563f, 0xed1d8ffaa2279669 -data8 0x3fd8bc7d93a70440, 0x3cd4922edc792ce2 -data8 0x95b78f8e8f92f274, 0xecb4bf1fd2be72da -data8 0x3fd901a5b3b9cf40, 0x3cd3fea1b00f9d0d -data8 0x963e1b4e63a87c3f, 0xec4aaa6d08694cc1 -data8 0x3fd946eca98f2700, 0x3cdba4032d968ff1 -data8 0x96c6fcef314074fc, 0xebdf502d53d65fea -data8 0x3fd98c52f024e800, 0x3cbe7be1ab8c95c9 -data8 0x97523ea3eab028b2, 0xeb72aea36720793e -data8 0x3fd9d1d904239860, 0x3cd72d08a6a22b70 -data8 0x97dfeae6f4ee4a9a, 0xeb04c4096a884e94 -data8 0x3fda177f63e8ef00, 0x3cd818c3c1ebfac7 -data8 0x98700c7c6d85d119, 0xea958e90cfe1efd7 -data8 0x3fda5d468f92a540, 0x3cdf45fbfaa080fe -data8 0x9902ae7487a9caa1, 0xea250c6224aab21a -data8 0x3fdaa32f090998e0, 0x3cd715a9353cede4 -data8 0x9997dc2e017a9550, 0xe9b33b9ce2bb7638 -data8 0x3fdae939540d3f00, 0x3cc545c014943439 -data8 0x9a2fa158b29b649b, 0xe9401a573f8aa706 -data8 0x3fdb2f65f63f6c60, 0x3cd4a63c2f2ca8e2 -data8 0x9aca09f835466186, 0xe8cba69df9f0bf35 -data8 0x3fdb75b5773075e0, 0x3cda310ce1b217ec -data8 0x9b672266ab1e0136, 0xe855de74266193d4 -data8 0x3fdbbc28606babc0, 0x3cdc84b75cca6c44 -data8 0x9c06f7579f0b7bd5, 0xe7debfd2f98c060b -data8 0x3fdc02bf3d843420, 0x3cd225d967ffb922 -data8 0x9ca995db058cabdc, 0xe76648a991511c6e -data8 0x3fdc497a9c224780, 0x3cde08101c5b825b -data8 0x9d4f0b605ce71e88, 0xe6ec76dcbc02d9a7 -data8 0x3fdc905b0c10d420, 0x3cb1abbaa3edf120 -data8 0x9df765b9eecad5e6, 0xe6714846bdda7318 -data8 0x3fdcd7611f4b8a00, 0x3cbf6217ae80aadf -data8 0x9ea2b320350540fe, 0xe5f4bab71494cd6b -data8 0x3fdd1e8d6a0d56c0, 0x3cb726e048cc235c -data8 0x9f51023562fc5676, 0xe576cbf239235ecb -data8 0x3fdd65e082df5260, 0x3cd9e66872bd5250 -data8 0xa002620915c2a2f6, 0xe4f779b15f5ec5a7 -data8 0x3fddad5b02a82420, 0x3c89743b0b57534b -data8 0xa0b6e21c2caf9992, 0xe476c1a233a7873e -data8 0x3fddf4fd84bbe160, 0x3cbf7adea9ee3338 -data8 0xa16e9264cc83a6b2, 0xe3f4a16696608191 -data8 0x3fde3cc8a6ec6ee0, 0x3cce46f5a51f49c6 -data8 0xa22983528f3d8d49, 0xe3711694552da8a8 -data8 0x3fde84bd099a6600, 0x3cdc78f6490a2d31 -data8 0xa2e7c5d2e2e69460, 0xe2ec1eb4e1e0a5fb -data8 0x3fdeccdb4fc685c0, 0x3cdd3aedb56a4825 -data8 0xa3a96b5599bd2532, 0xe265b74506fbe1c9 -data8 0x3fdf15241f23b3e0, 0x3cd440f3c6d65f65 -data8 0xa46e85d1ae49d7de, 0xe1ddddb499b3606f -data8 0x3fdf5d98202994a0, 0x3cd6c44bd3fb745a -data8 0xa53727ca3e11b99e, 0xe1548f662951b00d -data8 0x3fdfa637fe27bf60, 0x3ca8ad1cd33054dd -data8 0xa6036453bdc20186, 0xe0c9c9aeabe5e481 -data8 0x3fdfef0467599580, 0x3cc0f1ac0685d78a -data8 0xa6d34f1969dda338, 0xe03d89d5281e4f81 -data8 0x3fe01bff067d6220, 0x3cc0731e8a9ef057 -data8 0xa7a6fc62f7246ff3, 0xdfafcd125c323f54 -data8 0x3fe04092d1ae3b40, 0x3ccabda24b59906d -data8 0xa87e811a861df9b9, 0xdf20909061bb9760 -data8 0x3fe0653df0fd9fc0, 0x3ce94c8dcc722278 -data8 0xa959f2d2dd687200, 0xde8fd16a4e5f88bd -data8 0x3fe08a00c1cae320, 0x3ce6b888bb60a274 -data8 0xaa3967cdeea58bda, 0xddfd8cabd1240d22 -data8 0x3fe0aedba3221c00, 0x3ced5941cd486e46 -data8 0xab904fd587263c84, 0xdd1f4472e1cf64ed -data8 0x3fe0e651e85229c0, 0x3cdb6701042299b1 -data8 0xad686d44dd5a74bb, 0xdbf173e1f6b46e92 -data8 0x3fe1309cbf4cdb20, 0x3cbf1be7bb3f0ec5 -data8 0xaf524e15640ebee4, 0xdabd54896f1029f6 -data8 0x3fe17b4ee1641300, 0x3ce81dd055b792f1 -data8 0xb14eca24ef7db3fa, 0xd982cb9ae2f47e41 -data8 0x3fe1c66b9ffd6660, 0x3cd98ea31eb5ddc7 -data8 0xb35ec807669920ce, 0xd841bd1b8291d0b6 -data8 0x3fe211f66db3a5a0, 0x3ca480c35a27b4a2 -data8 0xb5833e4755e04dd1, 0xd6fa0bd3150b6930 -data8 0x3fe25df2e05b6c40, 0x3ca4bc324287a351 -data8 0xb7bd34c8000b7bd3, 0xd5ab9939a7d23aa1 -data8 0x3fe2aa64b32f7780, 0x3cba67314933077c -data8 0xba0dc64d126cc135, 0xd4564563ce924481 -data8 0x3fe2f74fc9289ac0, 0x3cec1a1dc0efc5ec -data8 0xbc76222cbbfa74a6, 0xd2f9eeed501125a8 -data8 0x3fe344b82f859ac0, 0x3ceeef218de413ac -data8 0xbef78e31985291a9, 0xd19672e2182f78be -data8 0x3fe392a22087b7e0, 0x3cd2619ba201204c -data8 0xc19368b2b0629572, 0xd02baca5427e436a -data8 0x3fe3e11206694520, 0x3cb5d0b3143fe689 -data8 0xc44b2ae8c6733e51, 0xceb975d60b6eae5d -data8 0x3fe4300c7e945020, 0x3cbd367143da6582 -data8 0xc7206b894212dfef, 0xcd3fa6326ff0ac9a -data8 0x3fe47f965d201d60, 0x3ce797c7a4ec1d63 -data8 0xca14e1b0622de526, 0xcbbe13773c3c5338 -data8 0x3fe4cfb4b09d1a20, 0x3cedfadb5347143c -data8 0xcd2a6825eae65f82, 0xca34913d425a5ae9 -data8 0x3fe5206cc637e000, 0x3ce2798b38e54193 -data8 0xd06301095e1351ee, 0xc8a2f0d3679c08c0 -data8 0x3fe571c42e3d0be0, 0x3ccd7cb9c6c2ca68 -data8 0xd3c0d9f50057adda, 0xc70901152d59d16b -data8 0x3fe5c3c0c108f940, 0x3ceb6c13563180ab -data8 0xd74650a98cc14789, 0xc5668e3d4cbf8828 -data8 0x3fe61668a46ffa80, 0x3caa9092e9e3c0e5 -data8 0xdaf5f8579dcc8f8f, 0xc3bb61b3eed42d02 -data8 0x3fe669c251ad69e0, 0x3cccf896ef3b4fee -data8 0xded29f9f9a6171b4, 0xc20741d7f8e8e8af -data8 0x3fe6bdd49bea05c0, 0x3cdc6b29937c575d -data8 0xe2df5765854ccdb0, 0xc049f1c2d1b8014b -data8 0x3fe712a6b76c6e80, 0x3ce1ddc6f2922321 -data8 0xe71f7a9b94fcb4c3, 0xbe833105ec291e91 -data8 0x3fe76840418978a0, 0x3ccda46e85432c3d -data8 0xeb96b72d3374b91e, 0xbcb2bb61493b28b3 -data8 0x3fe7bea9496d5a40, 0x3ce37b42ec6e17d3 -data8 0xf049183c3f53c39b, 0xbad848720223d3a8 -data8 0x3fe815ea59dab0a0, 0x3cb03ad41bfc415b -data8 0xf53b11ec7f415f15, 0xb8f38b57c53c9c48 -data8 0x3fe86e0c84010760, 0x3cc03bfcfb17fe1f -data8 0xfa718f05adbf2c33, 0xb70432500286b185 -data8 0x3fe8c7196b9225c0, 0x3ced99fcc6866ba9 -data8 0xfff200c3f5489608, 0xb509e6454dca33cc -data8 0x3fe9211b54441080, 0x3cb789cb53515688 -// The following table entries are not used -//data8 0x82e138a0fac48700, 0xb3044a513a8e6132 -//data8 0x3fe97c1d30f5b7c0, 0x3ce1eb765612d1d0 -//data8 0x85f4cc7fc670d021, 0xb0f2fb2ea6cbbc88 -//data8 0x3fe9d82ab4b5fde0, 0x3ced3fe6f27e8039 -//data8 0x89377c1387d5b908, 0xaed58e9a09014d5c -//data8 0x3fea355065f87fa0, 0x3cbef481d25f5b58 -//data8 0x8cad7a2c98dec333, 0xacab929ce114d451 -//data8 0x3fea939bb451e2a0, 0x3c8e92b4fbf4560f -//data8 0x905b7dfc99583025, 0xaa748cc0dbbbc0ec -//data8 0x3feaf31b11270220, 0x3cdced8c61bd7bd5 -//data8 0x9446d8191f80dd42, 0xa82ff92687235baf -//data8 0x3feb53de0bcffc20, 0x3cbe1722fb47509e -//data8 0x98758ba086e4000a, 0xa5dd497a9c184f58 -//data8 0x3febb5f571cb0560, 0x3ce0c7774329a613 -//data8 0x9cee6c7bf18e4e24, 0xa37be3c3cd1de51b -//data8 0x3fec197373bc7be0, 0x3ce08ebdb55c3177 -//data8 0xa1b944000a1b9440, 0xa10b2101b4f27e03 -//data8 0x3fec7e6bd023da60, 0x3ce5fc5fd4995959 -//data8 0xa6defd8ba04d3e38, 0x9e8a4b93cad088ec -//data8 0x3fece4f404e29b20, 0x3cea3413401132b5 -//data8 0xac69dd408a10c62d, 0x9bf89d5d17ddae8c -//data8 0x3fed4d2388f63600, 0x3cd5a7fb0d1d4276 -//data8 0xb265c39cbd80f97a, 0x99553d969fec7beb -//data8 0x3fedb714101e0a00, 0x3cdbda21f01193f2 -//data8 0xb8e081a16ae4ae73, 0x969f3e3ed2a0516c -//data8 0x3fee22e1da97bb00, 0x3ce7231177f85f71 -//data8 0xbfea427678945732, 0x93d5990f9ee787af -//data8 0x3fee90ac13b18220, 0x3ce3c8a5453363a5 -//data8 0xc79611399b8c90c5, 0x90f72bde80febc31 -//data8 0x3fef009542b712e0, 0x3ce218fd79e8cb56 -//data8 0xcffa8425040624d7, 0x8e02b4418574ebed -//data8 0x3fef72c3d2c57520, 0x3cd32a717f82203f -//data8 0xd93299cddcf9cf23, 0x8af6ca48e9c44024 -//data8 0x3fefe762b77744c0, 0x3ce53478a6bbcf94 -//data8 0xe35eda760af69ad9, 0x87d1da0d7f45678b -//data8 0x3ff02f511b223c00, 0x3ced6e11782c28fc -//data8 0xeea6d733421da0a6, 0x84921bbe64ae029a -//data8 0x3ff06c5c6f8ce9c0, 0x3ce71fc71c1ffc02 -//data8 0xfb3b2c73fc6195cc, 0x813589ba3a5651b6 -//data8 0x3ff0aaf2613700a0, 0x3cf2a72d2fd94ef3 -//data8 0x84ac1fcec4203245, 0xfb73a828893df19e -//data8 0x3ff0eb367c3fd600, 0x3cf8054c158610de -//data8 0x8ca50621110c60e6, 0xf438a14c158d867c -//data8 0x3ff12d51caa6b580, 0x3ce6bce9748739b6 -//data8 0x95b8c2062d6f8161, 0xecb3ccdd37b369da -//data8 0x3ff1717418520340, 0x3ca5c2732533177c -//data8 0xa0262917caab4ad1, 0xe4dde4ddc81fd119 -//data8 0x3ff1b7d59dd40ba0, 0x3cc4c7c98e870ff5 -//data8 0xac402c688b72f3f4, 0xdcae469be46d4c8d -//data8 0x3ff200b93cc5a540, 0x3c8dd6dc1bfe865a -//data8 0xba76968b9eabd9ab, 0xd41a8f3df1115f7f -//data8 0x3ff24c6f8f6affa0, 0x3cf1acb6d2a7eff7 -//data8 0xcb63c87c23a71dc5, 0xcb161074c17f54ec -//data8 0x3ff29b5b338b7c80, 0x3ce9b5845f6ec746 -//data8 0xdfe323b8653af367, 0xc19107d99ab27e42 -//data8 0x3ff2edf6fac7f5a0, 0x3cf77f961925fa02 -//data8 0xf93746caaba3e1f1, 0xb777744a9df03bff -//data8 0x3ff344df237486c0, 0x3cf6ddf5f6ddda43 -//data8 0x8ca77052f6c340f0, 0xacaf476f13806648 -//data8 0x3ff3a0dfa4bb4ae0, 0x3cfee01bbd761bff -//data8 0xa1a48604a81d5c62, 0xa11575d30c0aae50 -//data8 0x3ff4030b73c55360, 0x3cf1cf0e0324d37c -//data8 0xbe45074b05579024, 0x9478e362a07dd287 -//data8 0x3ff46ce4c738c4e0, 0x3ce3179555367d12 -//data8 0xe7a08b5693d214ec, 0x8690e3575b8a7c3b -//data8 0x3ff4e0a887c40a80, 0x3cfbd5d46bfefe69 -//data8 0x94503d69396d91c7, 0xedd2ce885ff04028 -//data8 0x3ff561ebd9c18cc0, 0x3cf331bd176b233b -//data8 0xced1d96c5bb209e6, 0xc965278083808702 -//data8 0x3ff5f71d7ff42c80, 0x3ce3301cc0b5a48c -//data8 0xabac2cee0fc24e20, 0x9c4eb1136094cbbd -//data8 0x3ff6ae4c63222720, 0x3cf5ff46874ee51e -//data8 0x8040201008040201, 0xb4d7ac4d9acb1bf4 -//data8 0x3ff7b7d33b928c40, 0x3cfacdee584023bb -LOCAL_OBJECT_END(T_table) - - - -.align 16 - -LOCAL_OBJECT_START(poly_coeffs) - // C_3 -data8 0xaaaaaaaaaaaaaaab, 0x0000000000003ffc - // C_5 -data8 0x999999999999999a, 0x0000000000003ffb - // C_7, C_9 -data8 0x3fa6db6db6db6db7, 0x3f9f1c71c71c71c8 - // pi/2 (low, high) -data8 0x3C91A62633145C07, 0x3FF921FB54442D18 - // C_11, C_13 -data8 0x3f96e8ba2e8ba2e9, 0x3f91c4ec4ec4ec4e - // C_15, C_17 -data8 0x3f8c99999999999a, 0x3f87a87878787223 - // pi (low, high) -data8 0x3CA1A62633145C07, 0x400921FB54442D18 -LOCAL_OBJECT_END(poly_coeffs) - - -R_DBL_S = r21 -R_EXP0 = r22 -R_EXP = r15 -R_SGNMASK = r23 -R_TMP = r24 -R_TMP2 = r25 -R_INDEX = r26 -R_TMP3 = r27 -R_TMP03 = r27 -R_TMP4 = r28 -R_TMP5 = r23 -R_TMP6 = r22 -R_TMP7 = r21 -R_T = r29 -R_BIAS = r20 - -F_T = f6 -F_1S2 = f7 -F_1S2_S = f9 -F_INV_1T2 = f10 -F_SQRT_1T2 = f11 -F_S2T2 = f12 -F_X = f13 -F_D = f14 -F_2M64 = f15 - -F_CS2 = f32 -F_CS3 = f33 -F_CS4 = f34 -F_CS5 = f35 -F_CS6 = f36 -F_CS7 = f37 -F_CS8 = f38 -F_CS9 = f39 -F_S23 = f40 -F_S45 = f41 -F_S67 = f42 -F_S89 = f43 -F_S25 = f44 -F_S69 = f45 -F_S29 = f46 -F_X2 = f47 -F_X4 = f48 -F_TSQRT = f49 -F_DTX = f50 -F_R = f51 -F_R2 = f52 -F_R3 = f53 -F_R4 = f54 - -F_C3 = f55 -F_C5 = f56 -F_C7 = f57 -F_C9 = f58 -F_P79 = f59 -F_P35 = f60 -F_P39 = f61 - -F_ATHI = f62 -F_ATLO = f63 - -F_T1 = f64 -F_Y = f65 -F_Y2 = f66 -F_ANDMASK = f67 -F_ORMASK = f68 -F_S = f69 -F_05 = f70 -F_SQRT_1S2 = f71 -F_DS = f72 -F_Z = f73 -F_1T2 = f74 -F_DZ = f75 -F_ZE = f76 -F_YZ = f77 -F_Y1S2 = f78 -F_Y1S2X = f79 -F_1X = f80 -F_ST = f81 -F_1T2_ST = f82 -F_TSS = f83 -F_Y1S2X2 = f84 -F_DZ_TERM = f85 -F_DTS = f86 -F_DS2X = f87 -F_T2 = f88 -F_ZY1S2S = f89 -F_Y1S2_1X = f90 -F_TS = f91 -F_PI2_LO = f92 -F_PI2_HI = f93 -F_S19 = f94 -F_INV1T2_2 = f95 -F_CORR = f96 -F_DZ0 = f97 - -F_C11 = f98 -F_C13 = f99 -F_C15 = f100 -F_C17 = f101 -F_P1113 = f102 -F_P1517 = f103 -F_P1117 = f104 -F_P317 = f105 -F_R8 = f106 -F_HI = f107 -F_1S2_HI = f108 -F_DS2 = f109 -F_Y2_2 = f110 -//F_S2 = f111 -//F_S_DS2 = f112 -F_S_1S2S = f113 -F_XL = f114 -F_2M128 = f115 -F_1AS = f116 -F_AS = f117 - - - -.section .text -GLOBAL_LIBM_ENTRY(acosl) - -{.mfi - // get exponent, mantissa (rounded to double precision) of s - getf.d R_DBL_S = f8 - // 1-s^2 - fnma.s1 F_1S2 = f8, f8, f1 - // r2 = pointer to T_table - addl r2 = @ltoff(T_table), gp -} - -{.mfi - // sign mask - mov R_SGNMASK = 0x20000 - nop.f 0 - // bias-63-1 - mov R_TMP03 = 0xffff-64;; -} - - -{.mfi - // get exponent of s - getf.exp R_EXP = f8 - nop.f 0 - // R_TMP4 = 2^45 - shl R_TMP4 = R_SGNMASK, 45-17 -} - -{.mlx - // load bias-4 - mov R_TMP = 0xffff-4 - // load RU(sqrt(2)/2) to integer register (in double format, shifted left by 1) - movl R_TMP2 = 0x7fcd413cccfe779a;; -} - - -{.mfi - // load 2^{-64} in FP register - setf.exp F_2M64 = R_TMP03 - nop.f 0 - // index = (0x7-exponent)|b1 b2.. b6 - extr.u R_INDEX = R_DBL_S, 46, 9 -} - -{.mfi - // get t = sign|exponent|b1 b2.. b6 1 x.. x - or R_T = R_DBL_S, R_TMP4 - nop.f 0 - // R_TMP4 = 2^45-1 - sub R_TMP4 = R_TMP4, r0, 1;; -} - - -{.mfi - // get t = sign|exponent|b1 b2.. b6 1 0.. 0 - andcm R_T = R_T, R_TMP4 - nop.f 0 - // eliminate sign from R_DBL_S (shift left by 1) - shl R_TMP3 = R_DBL_S, 1 -} - -{.mfi - // R_BIAS = 3*2^6 - mov R_BIAS = 0xc0 - nop.f 0 - // eliminate sign from R_EXP - andcm R_EXP0 = R_EXP, R_SGNMASK;; -} - - - -{.mfi - // load start address for T_table - ld8 r2 = [r2] - nop.f 0 - // p8 = 1 if |s|> = sqrt(2)/2 - cmp.geu p8, p0 = R_TMP3, R_TMP2 -} - -{.mlx - // p7 = 1 if |s|<2^{-4} (exponent of s<bias-4) - cmp.lt p7, p0 = R_EXP0, R_TMP - // sqrt coefficient cs8 = -33*13/128 - movl R_TMP2 = 0xc0568000;; -} - - - -{.mbb - // load t in FP register - setf.d F_T = R_T - // if |s|<2^{-4}, take alternate path - (p7) br.cond.spnt SMALL_S - // if |s|> = sqrt(2)/2, take alternate path - (p8) br.cond.sptk LARGE_S -} - -{.mlx - // index = (4-exponent)|b1 b2.. b6 - sub R_INDEX = R_INDEX, R_BIAS - // sqrt coefficient cs9 = 55*13/128 - movl R_TMP = 0x40b2c000;; -} - - -{.mfi - // sqrt coefficient cs8 = -33*13/128 - setf.s F_CS8 = R_TMP2 - nop.f 0 - // shift R_INDEX by 5 - shl R_INDEX = R_INDEX, 5 -} - -{.mfi - // sqrt coefficient cs3 = 0.5 (set exponent = bias-1) - mov R_TMP4 = 0xffff - 1 - nop.f 0 - // sqrt coefficient cs6 = -21/16 - mov R_TMP6 = 0xbfa8;; -} - - -{.mlx - // table index - add r2 = r2, R_INDEX - // sqrt coefficient cs7 = 33/16 - movl R_TMP2 = 0x40040000;; -} - - -{.mmi - // load cs9 = 55*13/128 - setf.s F_CS9 = R_TMP - // sqrt coefficient cs5 = 7/8 - mov R_TMP3 = 0x3f60 - // sqrt coefficient cs6 = 21/16 - shl R_TMP6 = R_TMP6, 16;; -} - - -{.mmi - // load significand of 1/(1-t^2) - ldf8 F_INV_1T2 = [r2], 8 - // sqrt coefficient cs7 = 33/16 - setf.s F_CS7 = R_TMP2 - // sqrt coefficient cs4 = -5/8 - mov R_TMP5 = 0xbf20;; -} - - -{.mmi - // load significand of sqrt(1-t^2) - ldf8 F_SQRT_1T2 = [r2], 8 - // sqrt coefficient cs6 = 21/16 - setf.s F_CS6 = R_TMP6 - // sqrt coefficient cs5 = 7/8 - shl R_TMP3 = R_TMP3, 16;; -} - - -{.mmi - // sqrt coefficient cs3 = 0.5 (set exponent = bias-1) - setf.exp F_CS3 = R_TMP4 - // r3 = pointer to polynomial coefficients - addl r3 = @ltoff(poly_coeffs), gp - // sqrt coefficient cs4 = -5/8 - shl R_TMP5 = R_TMP5, 16;; -} - - -{.mfi - // sqrt coefficient cs5 = 7/8 - setf.s F_CS5 = R_TMP3 - // d = s-t - fms.s1 F_D = f8, f1, F_T - // set p6 = 1 if s<0, p11 = 1 if s> = 0 - cmp.ge p6, p11 = R_EXP, R_DBL_S -} - -{.mfi - // r3 = load start address to polynomial coefficients - ld8 r3 = [r3] - // s+t - fma.s1 F_S2T2 = f8, f1, F_T - nop.i 0;; -} - - -{.mfi - // sqrt coefficient cs4 = -5/8 - setf.s F_CS4 = R_TMP5 - // s^2-t^2 - fma.s1 F_S2T2 = F_S2T2, F_D, f0 - nop.i 0;; -} - - -{.mfi - // load C3 - ldfe F_C3 = [r3], 16 - // 0.5/(1-t^2) = 2^{-64}*(2^63/(1-t^2)) - fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0 - nop.i 0;; -} - -{.mfi - // load C_5 - ldfe F_C5 = [r3], 16 - // set correct exponent for sqrt(1-t^2) - fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0 - nop.i 0;; -} - - -{.mfi - // load C_7, C_9 - ldfpd F_C7, F_C9 = [r3], 16 - // x = -(s^2-t^2)/(1-t^2)/2 - fnma.s1 F_X = F_INV_1T2, F_S2T2, f0 - nop.i 0;; -} - - -{.mmf - // load asin(t)_high, asin(t)_low - ldfpd F_ATHI, F_ATLO = [r2] - // load pi/2 - ldfpd F_PI2_LO, F_PI2_HI = [r3] - // t*sqrt(1-t^2) - fma.s1 F_TSQRT = F_T, F_SQRT_1T2, f0;; -} - - -{.mfi - nop.m 0 - // cs9*x+cs8 - fma.s1 F_S89 = F_CS9, F_X, F_CS8 - nop.i 0 -} - -{.mfi - nop.m 0 - // cs7*x+cs6 - fma.s1 F_S67 = F_CS7, F_X, F_CS6 - nop.i 0;; -} - -{.mfi - nop.m 0 - // cs5*x+cs4 - fma.s1 F_S45 = F_CS5, F_X, F_CS4 - nop.i 0 -} - -{.mfi - nop.m 0 - // x*x - fma.s1 F_X2 = F_X, F_X, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (s-t)-t*x - fnma.s1 F_DTX = F_T, F_X, F_D - nop.i 0 -} - -{.mfi - nop.m 0 - // cs3*x+cs2 (cs2 = -0.5 = -cs3) - fms.s1 F_S23 = F_CS3, F_X, F_CS3 - nop.i 0;; -} - -{.mfi - nop.m 0 - // if sign is negative, negate table values: asin(t)_low - (p6) fnma.s1 F_ATLO = F_ATLO, f1, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // if sign is negative, negate table values: asin(t)_high - (p6) fnma.s1 F_ATHI = F_ATHI, f1, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // cs9*x^3+cs8*x^2+cs7*x+cs6 - fma.s1 F_S69 = F_S89, F_X2, F_S67 - nop.i 0 -} - -{.mfi - nop.m 0 - // x^4 - fma.s1 F_X4 = F_X2, F_X2, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // t*sqrt(1-t^2)*x^2 - fma.s1 F_TSQRT = F_TSQRT, F_X2, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // cs5*x^3+cs4*x^2+cs3*x+cs2 - fma.s1 F_S25 = F_S45, F_X2, F_S23 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // ((s-t)-t*x)*sqrt(1-t^2) - fma.s1 F_DTX = F_DTX, F_SQRT_1T2, f0 - nop.i 0;; -} - -{.mfi - nop.m 0 - // (pi/2)_high - asin(t)_high - fnma.s1 F_ATHI = F_ATHI, f1, F_PI2_HI - nop.i 0 -} - -{.mfi - nop.m 0 - // asin(t)_low - (pi/2)_low - fnma.s1 F_ATLO = F_PI2_LO, f1, F_ATLO - nop.i 0;; -} - - -{.mfi - nop.m 0 - // PS29 = cs9*x^7+..+cs5*x^3+cs4*x^2+cs3*x+cs2 - fma.s1 F_S29 = F_S69, F_X4, F_S25 - nop.i 0;; -} - - - -{.mfi - nop.m 0 - // R = ((s-t)-t*x)*sqrt(1-t^2)-t*sqrt(1-t^2)*x^2*PS29 - fnma.s1 F_R = F_S29, F_TSQRT, F_DTX - nop.i 0;; -} - - -{.mfi - nop.m 0 - // R^2 - fma.s1 F_R2 = F_R, F_R, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c7+c9*R^2 - fma.s1 F_P79 = F_C9, F_R2, F_C7 - nop.i 0 -} - -{.mfi - nop.m 0 - // c3+c5*R^2 - fma.s1 F_P35 = F_C5, F_R2, F_C3 - nop.i 0;; -} - -{.mfi - nop.m 0 - // R^3 - fma.s1 F_R4 = F_R2, F_R2, f0 - nop.i 0;; -} - -{.mfi - nop.m 0 - // R^3 - fma.s1 F_R3 = F_R2, F_R, f0 - nop.i 0;; -} - - - -{.mfi - nop.m 0 - // c3+c5*R^2+c7*R^4+c9*R^6 - fma.s1 F_P39 = F_P79, F_R4, F_P35 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) - fma.s1 F_P39 = F_P39, F_R3, F_ATLO - nop.i 0;; -} - - -{.mfi - nop.m 0 - // R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) - fma.s1 F_P39 = F_P39, f1, F_R - nop.i 0;; -} - - -{.mfb - nop.m 0 - // result = (pi/2)-asin(t)_high+R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) - fnma.s0 f8 = F_P39, f1, F_ATHI - // return - br.ret.sptk b0;; -} - - - - -LARGE_S: - -{.mfi - // bias-1 - mov R_TMP3 = 0xffff - 1 - // y ~ 1/sqrt(1-s^2) - frsqrta.s1 F_Y, p7 = F_1S2 - // c9 = 55*13*17/128 - mov R_TMP4 = 0x10af7b -} - -{.mlx - // c8 = -33*13*15/128 - mov R_TMP5 = 0x184923 - movl R_TMP2 = 0xff00000000000000;; -} - -{.mfi - // set p6 = 1 if s<0, p11 = 1 if s>0 - cmp.ge p6, p11 = R_EXP, R_DBL_S - // 1-s^2 - fnma.s1 F_1S2 = f8, f8, f1 - // set p9 = 1 - cmp.eq p9, p0 = r0, r0;; -} - - -{.mfi - // load 0.5 - setf.exp F_05 = R_TMP3 - // (1-s^2) rounded to single precision - fnma.s.s1 F_1S2_S = f8, f8, f1 - // c9 = 55*13*17/128 - shl R_TMP4 = R_TMP4, 10 -} - -{.mlx - // AND mask for getting t ~ sqrt(1-s^2) - setf.sig F_ANDMASK = R_TMP2 - // OR mask - movl R_TMP2 = 0x0100000000000000;; -} - -.pred.rel "mutex", p6, p11 -{.mfi - nop.m 0 - // 1-|s| - (p6) fma.s1 F_1AS = f8, f1, f1 - nop.i 0 -} - -{.mfi - nop.m 0 - // 1-|s| - (p11) fnma.s1 F_1AS = f8, f1, f1 - nop.i 0;; -} - - -{.mfi - // c9 = 55*13*17/128 - setf.s F_CS9 = R_TMP4 - // |s| - (p6) fnma.s1 F_AS = f8, f1, f0 - // c8 = -33*13*15/128 - shl R_TMP5 = R_TMP5, 11 -} - -{.mfi - // c7 = 33*13/16 - mov R_TMP4 = 0x41d68 - // |s| - (p11) fma.s1 F_AS = f8, f1, f0 - nop.i 0;; -} - - -{.mfi - setf.sig F_ORMASK = R_TMP2 - // y^2 - fma.s1 F_Y2 = F_Y, F_Y, f0 - // c7 = 33*13/16 - shl R_TMP4 = R_TMP4, 12 -} - -{.mfi - // c6 = -33*7/16 - mov R_TMP6 = 0xc1670 - // y' ~ sqrt(1-s^2) - fma.s1 F_T1 = F_Y, F_1S2, f0 - // c5 = 63/8 - mov R_TMP7 = 0x40fc;; -} - - -{.mlx - // load c8 = -33*13*15/128 - setf.s F_CS8 = R_TMP5 - // c4 = -35/8 - movl R_TMP5 = 0xc08c0000;; -} - -{.mfi - // r3 = pointer to polynomial coefficients - addl r3 = @ltoff(poly_coeffs), gp - // 1-s-(1-s^2)_s - fnma.s1 F_DS = F_1S2_S, f1, F_1AS - // p9 = 0 if p7 = 1 (p9 = 1 for special cases only) - (p7) cmp.ne p9, p0 = r0, r0 -} - -{.mlx - // load c7 = 33*13/16 - setf.s F_CS7 = R_TMP4 - // c3 = 5/2 - movl R_TMP4 = 0x40200000;; -} - - -{.mlx - // load c4 = -35/8 - setf.s F_CS4 = R_TMP5 - // c2 = -3/2 - movl R_TMP5 = 0xbfc00000;; -} - - -{.mfi - // load c3 = 5/2 - setf.s F_CS3 = R_TMP4 - // x = (1-s^2)_s*y^2-1 - fms.s1 F_X = F_1S2_S, F_Y2, f1 - // c6 = -33*7/16 - shl R_TMP6 = R_TMP6, 12 -} - -{.mfi - nop.m 0 - // y^2/2 - fma.s1 F_Y2_2 = F_Y2, F_05, f0 - nop.i 0;; -} - - -{.mfi - // load c6 = -33*7/16 - setf.s F_CS6 = R_TMP6 - // eliminate lower bits from y' - fand F_T = F_T1, F_ANDMASK - // c5 = 63/8 - shl R_TMP7 = R_TMP7, 16 -} - - -{.mfb - // r3 = load start address to polynomial coefficients - ld8 r3 = [r3] - // 1-(1-s^2)_s-s^2 - fma.s1 F_DS = F_AS, F_1AS, F_DS - // p9 = 1 if s is a special input (NaN, or |s|> = 1) - (p9) br.cond.spnt acosl_SPECIAL_CASES;; -} - -{.mmf - // get exponent, significand of y' (in single prec.) - getf.s R_TMP = F_T1 - // load c3 = -3/2 - setf.s F_CS2 = R_TMP5 - // y*(1-s^2) - fma.s1 F_Y1S2 = F_Y, F_1S2, f0;; -} - - - -{.mfi - nop.m 0 - // if s<0, set s = -s - (p6) fnma.s1 f8 = f8, f1, f0 - nop.i 0;; -} - - -{.mfi - // load c5 = 63/8 - setf.s F_CS5 = R_TMP7 - // x = (1-s^2)_s*y^2-1+(1-(1-s^2)_s-s^2)*y^2 - fma.s1 F_X = F_DS, F_Y2, F_X - // for t = 2^k*1.b1 b2.., get 7-k|b1.. b6 - extr.u R_INDEX = R_TMP, 17, 9;; -} - - -{.mmi - // index = (4-exponent)|b1 b2.. b6 - sub R_INDEX = R_INDEX, R_BIAS - nop.m 0 - // get exponent of y - shr.u R_TMP2 = R_TMP, 23;; -} - -{.mmi - // load C3 - ldfe F_C3 = [r3], 16 - // set p8 = 1 if y'<2^{-4} - cmp.gt p8, p0 = 0x7b, R_TMP2 - // shift R_INDEX by 5 - shl R_INDEX = R_INDEX, 5;; -} - - -{.mfb - // get table index for sqrt(1-t^2) - add r2 = r2, R_INDEX - // get t = 2^k*1.b1 b2.. b7 1 - for F_T = F_T, F_ORMASK - (p8) br.cond.spnt VERY_LARGE_INPUT;; -} - - - -{.mmf - // load C5 - ldfe F_C5 = [r3], 16 - // load 1/(1-t^2) - ldfp8 F_INV_1T2, F_SQRT_1T2 = [r2], 16 - // x = ((1-s^2)*y^2-1)/2 - fma.s1 F_X = F_X, F_05, f0;; -} - - - -{.mmf - nop.m 0 - // C7, C9 - ldfpd F_C7, F_C9 = [r3], 16 - // set correct exponent for t - fmerge.se F_T = F_T1, F_T;; -} - - - -{.mfi - // get address for loading pi - add r3 = 48, r3 - // c9*x+c8 - fma.s1 F_S89 = F_X, F_CS9, F_CS8 - nop.i 0 -} - -{.mfi - nop.m 0 - // x^2 - fma.s1 F_X2 = F_X, F_X, f0 - nop.i 0;; -} - - -{.mfi - // pi (low, high) - ldfpd F_PI2_LO, F_PI2_HI = [r3] - // y*(1-s^2)*x - fma.s1 F_Y1S2X = F_Y1S2, F_X, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // c7*x+c6 - fma.s1 F_S67 = F_X, F_CS7, F_CS6 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // 1-x - fnma.s1 F_1X = F_X, f1, f1 - nop.i 0 -} - -{.mfi - nop.m 0 - // c3*x+c2 - fma.s1 F_S23 = F_X, F_CS3, F_CS2 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // 1-t^2 - fnma.s1 F_1T2 = F_T, F_T, f1 - nop.i 0 -} - -{.mfi - // load asin(t)_high, asin(t)_low - ldfpd F_ATHI, F_ATLO = [r2] - // c5*x+c4 - fma.s1 F_S45 = F_X, F_CS5, F_CS4 - nop.i 0;; -} - - - -{.mfi - nop.m 0 - // t*s - fma.s1 F_TS = F_T, f8, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // 0.5/(1-t^2) - fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0 - nop.i 0;; -} - -{.mfi - nop.m 0 - // z~sqrt(1-t^2), rounded to 24 significant bits - fma.s.s1 F_Z = F_SQRT_1T2, F_2M64, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // sqrt(1-t^2) - fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // y*(1-s^2)*x^2 - fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // x^4 - fma.s1 F_X4 = F_X2, F_X2, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // s*t rounded to 24 significant bits - fma.s.s1 F_TSS = F_T, f8, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // c9*x^3+..+c6 - fma.s1 F_S69 = F_X2, F_S89, F_S67 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // ST = (t^2-1+s^2) rounded to 24 significant bits - fms.s.s1 F_ST = f8, f8, F_1T2 - nop.i 0 -} - -{.mfi - nop.m 0 - // c5*x^3+..+c2 - fma.s1 F_S25 = F_X2, F_S45, F_S23 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // 0.25/(1-t^2) - fma.s1 F_INV1T2_2 = F_05, F_INV_1T2, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // t*s-sqrt(1-t^2)*(1-s^2)*y - fnma.s1 F_TS = F_Y1S2, F_SQRT_1T2, F_TS - nop.i 0;; -} - - -{.mfi - nop.m 0 - // z*0.5/(1-t^2) - fma.s1 F_ZE = F_INV_1T2, F_SQRT_1T2, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // z^2+t^2-1 - fms.s1 F_DZ0 = F_Z, F_Z, F_1T2 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (1-s^2-(1-s^2)_s)*x - fma.s1 F_DS2X = F_X, F_DS, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // t*s-(t*s)_s - fms.s1 F_DTS = F_T, f8, F_TSS - nop.i 0 -} - -{.mfi - nop.m 0 - // c9*x^7+..+c2 - fma.s1 F_S29 = F_X4, F_S69, F_S25 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // y*z - fma.s1 F_YZ = F_Z, F_Y, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // t^2 - fma.s1 F_T2 = F_T, F_T, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // 1-t^2+ST - fma.s1 F_1T2_ST = F_ST, f1, F_1T2 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // y*(1-s^2)(1-x) - fma.s1 F_Y1S2_1X = F_Y1S2, F_1X, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // dz ~ sqrt(1-t^2)-z - fma.s1 F_DZ = F_DZ0, F_ZE, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // -1+correction for sqrt(1-t^2)-z - fnma.s1 F_CORR = F_INV1T2_2, F_DZ0, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (PS29*x^2+x)*y*(1-s^2) - fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X - nop.i 0;; -} - -{.mfi - nop.m 0 - // z*y*(1-s^2)_s - fma.s1 F_ZY1S2S = F_YZ, F_1S2_S, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // s^2-(1-t^2+ST) - fms.s1 F_1T2_ST = f8, f8, F_1T2_ST - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x - fma.s1 F_DTS = F_YZ, F_DS2X, F_DTS - nop.i 0 -} - -{.mfi - nop.m 0 - // dz*y*(1-s^2)*(1-x) - fma.s1 F_DZ_TERM = F_DZ, F_Y1S2_1X, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // R = t*s-sqrt(1-t^2)*(1-s^2)*y+sqrt(1-t^2)*(1-s^2)*y*PS19 - // (used for polynomial evaluation) - fma.s1 F_R = F_S19, F_SQRT_1T2, F_TS - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (PS29*x^2)*y*(1-s^2) - fma.s1 F_S29 = F_Y1S2X2, F_S29, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // apply correction to dz*y*(1-s^2)*(1-x) - fma.s1 F_DZ_TERM = F_DZ_TERM, F_CORR, F_DZ_TERM - nop.i 0;; -} - - -{.mfi - nop.m 0 - // R^2 - fma.s1 F_R2 = F_R, F_R, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x+dz*y*(1-s^2)*(1-x) - fma.s1 F_DZ_TERM = F_DZ_TERM, f1, F_DTS - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c7+c9*R^2 - fma.s1 F_P79 = F_C9, F_R2, F_C7 - nop.i 0 -} - -{.mfi - nop.m 0 - // c3+c5*R^2 - fma.s1 F_P35 = F_C5, F_R2, F_C3 - nop.i 0;; -} - -{.mfi - nop.m 0 - // asin(t)_low-(pi)_low (if s<0) - (p6) fms.s1 F_ATLO = F_ATLO, f1, F_PI2_LO - nop.i 0 -} - -{.mfi - nop.m 0 - // R^4 - fma.s1 F_R4 = F_R2, F_R2, f0 - nop.i 0;; -} - -{.mfi - nop.m 0 - // R^3 - fma.s1 F_R3 = F_R2, F_R, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (t*s)_s-t^2*y*z - fnma.s1 F_TSS = F_T2, F_YZ, F_TSS - nop.i 0 -} - -{.mfi - nop.m 0 - // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) - fma.s1 F_DZ_TERM = F_YZ, F_1T2_ST, F_DZ_TERM - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (pi)_hi-asin(t)_hi (if s<0) - (p6) fms.s1 F_ATHI = F_PI2_HI, f1, F_ATHI - nop.i 0 -} - -{.mfi - nop.m 0 - // c3+c5*R^2+c7*R^4+c9*R^6 - fma.s1 F_P39 = F_P79, F_R4, F_P35 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)+ - // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 - fma.s1 F_DZ_TERM = F_SQRT_1T2, F_S29, F_DZ_TERM - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (t*s)_s-t^2*y*z+z*y*ST - fma.s1 F_TSS = F_YZ, F_ST, F_TSS - nop.i 0 -} - -{.mfi - nop.m 0 - // -asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) - fms.s1 F_P39 = F_P39, F_R3, F_ATLO - nop.i 0;; -} - - -{.mfi - nop.m 0 - // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) + - // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + - // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) - fma.s1 F_DZ_TERM = F_P39, f1, F_DZ_TERM - nop.i 0;; -} - - -{.mfi - nop.m 0 - // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) + - // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x + - // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) - fma.s1 F_DZ_TERM = F_ZY1S2S, F_X, F_DZ_TERM - nop.i 0;; -} - - -{.mfi - nop.m 0 - // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) + - // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x + - // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) + - // + (t*s)_s-t^2*y*z+z*y*ST - fma.s1 F_DZ_TERM = F_TSS, f1, F_DZ_TERM - nop.i 0;; -} - - -.pred.rel "mutex", p6, p11 -{.mfi - nop.m 0 - // result: add high part of table value - // s>0 in this case - (p11) fnma.s0 f8 = F_DZ_TERM, f1, F_ATHI - nop.i 0 -} - -{.mfb - nop.m 0 - // result: add high part of pi-table value - // if s<0 - (p6) fma.s0 f8 = F_DZ_TERM, f1, F_ATHI - br.ret.sptk b0;; -} - - - - - - -SMALL_S: - - // use 15-term polynomial approximation - -{.mmi - // r3 = pointer to polynomial coefficients - addl r3 = @ltoff(poly_coeffs), gp;; - // load start address for coefficients - ld8 r3 = [r3] - mov R_TMP = 0x3fbf;; -} - - -{.mmi - add r2 = 64, r3 - ldfe F_C3 = [r3], 16 - // p7 = 1 if |s|<2^{-64} (exponent of s<bias-64) - cmp.lt p7, p0 = R_EXP0, R_TMP;; -} - -{.mmf - ldfe F_C5 = [r3], 16 - ldfpd F_C11, F_C13 = [r2], 16 - nop.f 0;; -} - -{.mmf - ldfpd F_C7, F_C9 = [r3], 16 - ldfpd F_C15, F_C17 = [r2] - nop.f 0;; -} - - - -{.mfb - // load pi/2 - ldfpd F_PI2_LO, F_PI2_HI = [r3] - // s^2 - fma.s1 F_R2 = f8, f8, f0 - // |s|<2^{-64} - (p7) br.cond.spnt RETURN_PI2;; -} - - -{.mfi - nop.m 0 - // s^3 - fma.s1 F_R3 = f8, F_R2, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // s^4 - fma.s1 F_R4 = F_R2, F_R2, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c3+c5*s^2 - fma.s1 F_P35 = F_C5, F_R2, F_C3 - nop.i 0 -} - -{.mfi - nop.m 0 - // c11+c13*s^2 - fma.s1 F_P1113 = F_C13, F_R2, F_C11 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c7+c9*s^2 - fma.s1 F_P79 = F_C9, F_R2, F_C7 - nop.i 0 -} - -{.mfi - nop.m 0 - // c15+c17*s^2 - fma.s1 F_P1517 = F_C17, F_R2, F_C15 - nop.i 0;; -} - -{.mfi - nop.m 0 - // (pi/2)_high-s_high - fnma.s1 F_T = f8, f1, F_PI2_HI - nop.i 0 -} -{.mfi - nop.m 0 - // s^8 - fma.s1 F_R8 = F_R4, F_R4, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c3+c5*s^2+c7*s^4+c9*s^6 - fma.s1 F_P39 = F_P79, F_R4, F_P35 - nop.i 0 -} - -{.mfi - nop.m 0 - // c11+c13*s^2+c15*s^4+c17*s^6 - fma.s1 F_P1117 = F_P1517, F_R4, F_P1113 - nop.i 0;; -} - -{.mfi - nop.m 0 - // -s_high - fms.s1 F_S = F_T, f1, F_PI2_HI - nop.i 0;; -} - -{.mfi - nop.m 0 - // c3+..+c17*s^14 - fma.s1 F_P317 = F_R8, F_P1117, F_P39 - nop.i 0;; -} - -{.mfi - nop.m 0 - // s_low - fma.s1 F_DS = f8, f1, F_S - nop.i 0;; -} - -{.mfi - nop.m 0 - // (pi/2)_low-s^3*(c3+..+c17*s^14) - fnma.s0 F_P317 = F_P317, F_R3, F_PI2_LO - nop.i 0;; -} - -{.mfi - nop.m 0 - // (pi/2)_low-s_low-s^3*(c3+..+c17*s^14) - fms.s1 F_P317 = F_P317, f1, F_DS - nop.i 0;; -} - -{.mfb - nop.m 0 - // result: pi/2-s-c3*s^3-..-c17*s^17 - fma.s0 f8 = F_T, f1, F_P317 - br.ret.sptk b0;; -} - - - - - -RETURN_PI2: - -{.mfi - nop.m 0 - // (pi/2)_low-s - fms.s0 F_PI2_LO = F_PI2_LO, f1, f8 - nop.i 0;; -} - -{.mfb - nop.m 0 - // (pi/2)-s - fma.s0 f8 = F_PI2_HI, f1, F_PI2_LO - br.ret.sptk b0;; -} - - - - - -VERY_LARGE_INPUT: - - -{.mmf - // pointer to pi_low, pi_high - add r2 = 80, r3 - // load C5 - ldfe F_C5 = [r3], 16 - // x = ((1-(s^2)_s)*y^2-1)/2-(s^2-(s^2)_s)*y^2/2 - fma.s1 F_X = F_X, F_05, f0;; -} - -.pred.rel "mutex", p6, p11 -{.mmf - // load pi (low, high), if s<0 - (p6) ldfpd F_PI2_LO, F_PI2_HI = [r2] - // C7, C9 - ldfpd F_C7, F_C9 = [r3], 16 - // if s>0, set F_PI2_LO=0 - (p11) fma.s1 F_PI2_HI = f0, f0, f0;; -} - -{.mfi - nop.m 0 - (p11) fma.s1 F_PI2_LO = f0, f0, f0 - nop.i 0;; -} - -{.mfi - // adjust address for C_11 - add r3 = 16, r3 - // c9*x+c8 - fma.s1 F_S89 = F_X, F_CS9, F_CS8 - nop.i 0 -} - -{.mfi - nop.m 0 - // x^2 - fma.s1 F_X2 = F_X, F_X, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // y*(1-s^2)*x - fma.s1 F_Y1S2X = F_Y1S2, F_X, f0 - nop.i 0 -} - -{.mfi - // C11, C13 - ldfpd F_C11, F_C13 = [r3], 16 - // c7*x+c6 - fma.s1 F_S67 = F_X, F_CS7, F_CS6 - nop.i 0;; -} - - -{.mfi - // C15, C17 - ldfpd F_C15, F_C17 = [r3], 16 - // c3*x+c2 - fma.s1 F_S23 = F_X, F_CS3, F_CS2 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c5*x+c4 - fma.s1 F_S45 = F_X, F_CS5, F_CS4 - nop.i 0;; -} - - - - -{.mfi - nop.m 0 - // y*(1-s^2)*x^2 - fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // x^4 - fma.s1 F_X4 = F_X2, F_X2, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c9*x^3+..+c6 - fma.s1 F_S69 = F_X2, F_S89, F_S67 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c5*x^3+..+c2 - fma.s1 F_S25 = F_X2, F_S45, F_S23 - nop.i 0;; -} - - - -{.mfi - nop.m 0 - // (pi)_high-y*(1-s^2)_s - fnma.s1 F_HI = F_Y, F_1S2_S, F_PI2_HI - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c9*x^7+..+c2 - fma.s1 F_S29 = F_X4, F_S69, F_S25 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // -(y*(1-s^2)_s)_high - fms.s1 F_1S2_HI = F_HI, f1, F_PI2_HI - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (PS29*x^2+x)*y*(1-s^2) - fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X - nop.i 0;; -} - - -{.mfi - nop.m 0 - // y*(1-s^2)_s-(y*(1-s^2))_high - fma.s1 F_DS2 = F_Y, F_1S2_S, F_1S2_HI - nop.i 0;; -} - - - -{.mfi - nop.m 0 - // R ~ sqrt(1-s^2) - // (used for polynomial evaluation) - fnma.s1 F_R = F_S19, f1, F_Y1S2 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // y*(1-s^2)-(y*(1-s^2))_high - fma.s1 F_DS2 = F_Y, F_DS, F_DS2 - nop.i 0 -} - -{.mfi - nop.m 0 - // (pi)_low+(PS29*x^2)*y*(1-s^2) - fma.s1 F_S29 = F_Y1S2X2, F_S29, F_PI2_LO - nop.i 0;; -} - - -{.mfi - nop.m 0 - // R^2 - fma.s1 F_R2 = F_R, F_R, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // if s<0 - // (pi)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high) - fms.s1 F_S29 = F_S29, f1, F_DS2 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c7+c9*R^2 - fma.s1 F_P79 = F_C9, F_R2, F_C7 - nop.i 0 -} - -{.mfi - nop.m 0 - // c3+c5*R^2 - fma.s1 F_P35 = F_C5, F_R2, F_C3 - nop.i 0;; -} - - - -{.mfi - nop.m 0 - // R^4 - fma.s1 F_R4 = F_R2, F_R2, f0 - nop.i 0 -} - -{.mfi - nop.m 0 - // R^3 - fma.s1 F_R3 = F_R2, F_R, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c11+c13*R^2 - fma.s1 F_P1113 = F_C13, F_R2, F_C11 - nop.i 0 -} - -{.mfi - nop.m 0 - // c15+c17*R^2 - fma.s1 F_P1517 = F_C17, F_R2, F_C15 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (pi)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)+y*(1-s^2)*x - fma.s1 F_S29 = F_Y1S2, F_X, F_S29 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c11+c13*R^2+c15*R^4+c17*R^6 - fma.s1 F_P1117 = F_P1517, F_R4, F_P1113 - nop.i 0 -} - -{.mfi - nop.m 0 - // c3+c5*R^2+c7*R^4+c9*R^6 - fma.s1 F_P39 = F_P79, F_R4, F_P35 - nop.i 0;; -} - - - -{.mfi - nop.m 0 - // R^8 - fma.s1 F_R8 = F_R4, F_R4, f0 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // c3+c5*R^2+c7*R^4+c9*R^6+..+c17*R^14 - fma.s1 F_P317 = F_P1117, F_R8, F_P39 - nop.i 0;; -} - - -{.mfi - nop.m 0 - // (pi)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)- - // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17 - fnma.s1 F_S29 = F_P317, F_R3, F_S29 - nop.i 0;; -} - -.pred.rel "mutex", p6, p11 -{.mfi - nop.m 0 - // Result (if s<0): - // (pi)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)- - // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17 - // +(pi)_high-(y*(1-s^2))_high - (p6) fma.s0 f8 = F_S29, f1, F_HI - nop.i 0 -} - -{.mfb - nop.m 0 - // Result (if s>0): - // (PS29*x^2)*y*(1-s^2)- - // -y*(1-s^2)*x + P3, 17 - // +(y*(1-s^2)) - (p11) fms.s0 f8 = F_Y, F_1S2_S, F_S29 - br.ret.sptk b0;; -} - - - - - - -acosl_SPECIAL_CASES: - -{.mfi - alloc r32 = ar.pfs, 1, 4, 4, 0 - // check if the input is a NaN, or unsupported format - // (i.e. not infinity or normal/denormal) - fclass.nm p7, p8 = f8, 0x3f - // pointer to pi/2 - add r3 = 96, r3;; -} - - -{.mfi - // load pi/2 - ldfpd F_PI2_HI, F_PI2_LO = [r3] - // get |s| - fmerge.s F_S = f0, f8 - nop.i 0 -} - -{.mfb - nop.m 0 - // if NaN, quietize it, and return - (p7) fma.s0 f8 = f8, f1, f0 - (p7) br.ret.spnt b0;; -} - - -{.mfi - nop.m 0 - // |s| = 1 ? - fcmp.eq.s0 p9, p10 = F_S, f1 - nop.i 0 -} - -{.mfi - nop.m 0 - // load FR_X - fma.s1 FR_X = f8, f1, f0 - // load error tag - mov GR_Parameter_TAG = 57;; -} - - -{.mfi - nop.m 0 - // if s = 1, result is 0 - (p9) fma.s0 f8 = f0, f0, f0 - // set p6=0 for |s|>1 - (p10) cmp.ne p6, p0 = r0, r0;; -} - - -{.mfb - nop.m 0 - // if s = -1, result is pi - (p6) fma.s0 f8 = F_PI2_HI, f1, F_PI2_LO - // return if |s| = 1 - (p9) br.ret.sptk b0;; -} - - -{.mfi - nop.m 0 - // get Infinity - frcpa.s1 FR_RESULT, p0 = f1, f0 - nop.i 0;; -} - - -{.mfb - nop.m 0 - // return QNaN indefinite (0*Infinity) - fma.s0 FR_RESULT = f0, FR_RESULT, f0 - nop.b 0;; -} - - -GLOBAL_LIBM_END(acosl) - - -LOCAL_LIBM_ENTRY(__libm_error_region) -.prologue -// (1) -{ .mfi - add GR_Parameter_Y=-32,sp // Parameter 2 value - nop.f 0 -.save ar.pfs,GR_SAVE_PFS - mov GR_SAVE_PFS=ar.pfs // Save ar.pfs -} -{ .mfi -.fframe 64 - add sp=-64,sp // Create new stack - nop.f 0 - mov GR_SAVE_GP=gp // Save gp -};; - - -// (2) -{ .mmi - stfe [GR_Parameter_Y] = f1,16 // Store Parameter 2 on stack - add GR_Parameter_X = 16,sp // Parameter 1 address -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0=b0 // Save b0 -};; - -.body -// (3) -{ .mib - stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack - add GR_Parameter_RESULT = 0,GR_Parameter_Y - nop.b 0 // Parameter 3 address -} -{ .mib - stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack - add GR_Parameter_Y = -16,GR_Parameter_Y - br.call.sptk b0=__libm_error_support# // Call error handling function -};; -{ .mmi - nop.m 0 - nop.m 0 - add GR_Parameter_RESULT = 48,sp -};; - -// (4) -{ .mmi - ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack -.restore sp - add sp = 64,sp // Restore stack pointer - mov b0 = GR_SAVE_B0 // Restore return address -};; - -{ .mib - mov gp = GR_SAVE_GP // Restore gp - mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs - br.ret.sptk b0 // Return -};; - -LOCAL_LIBM_END(__libm_error_region) - -.type __libm_error_support#,@function -.global __libm_error_support# - - - - - - |