diff options
author | Jakub Jelinek <jakub@redhat.com> | 2007-07-12 18:26:36 +0000 |
---|---|---|
committer | Jakub Jelinek <jakub@redhat.com> | 2007-07-12 18:26:36 +0000 |
commit | 0ecb606cb6cf65de1d9fc8a919bceb4be476c602 (patch) | |
tree | 2ea1f8305970753e4a657acb2ccc15ca3eec8e2c /sysdeps/ia64/fpu/e_acoshl.S | |
parent | 7d58530341304d403a6626d7f7a1913165fe2f32 (diff) | |
download | glibc-0ecb606cb6cf65de1d9fc8a919bceb4be476c602.tar.gz glibc-0ecb606cb6cf65de1d9fc8a919bceb4be476c602.tar.xz glibc-0ecb606cb6cf65de1d9fc8a919bceb4be476c602.zip |
2.5-18.1
Diffstat (limited to 'sysdeps/ia64/fpu/e_acoshl.S')
-rw-r--r-- | sysdeps/ia64/fpu/e_acoshl.S | 1716 |
1 files changed, 1716 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/e_acoshl.S b/sysdeps/ia64/fpu/e_acoshl.S new file mode 100644 index 0000000000..42e1f394ef --- /dev/null +++ b/sysdeps/ia64/fpu/e_acoshl.S @@ -0,0 +1,1716 @@ +.file "acoshl.s" + + +// Copyright (c) 2000 - 2005, Intel Corporation +// All rights reserved. +// +// Contributed 2000 by the Intel Numerics Group, Intel Corporation +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote +// products derived from this software without specific prior written +// permission. + +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS +// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Intel Corporation is the author of this code, and requests that all +// problem reports or change requests be submitted to it directly at +// http://www.intel.com/software/products/opensource/libraries/num.htm. +// +//********************************************************************* +// +// History: +// 10/01/01 Initial version +// 10/10/01 Performance inproved +// 12/11/01 Changed huges_logp to not be global +// 01/02/02 Corrected .restore syntax +// 05/20/02 Cleaned up namespace and sf0 syntax +// 08/14/02 Changed mli templates to mlx +// 02/06/03 Reorganized data tables +// 03/31/05 Reformatted delimiters between data tables +// +//********************************************************************* +// +// API +//============================================================== +// long double acoshl(long double); +// +// Overview of operation +//============================================================== +// +// There are 6 paths: +// 1. x = 1 +// Return acoshl(x) = 0; +// +// 2. x < 1 +// Return acoshl(x) = Nan (Domain error, error handler call with tag 135); +// +// 3. x = [S,Q]Nan or +INF +// Return acoshl(x) = x + x; +// +// 4. 'Near 1': 1 < x < 1+1/8 +// Return acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)), +// where y = 1, P(y)/Q(y) - rational approximation +// +// 5. 'Huges': x > 0.5*2^64 +// Return acoshl(x) = (logl(2*x-1)); +// +// 6. 'Main path': 1+1/8 < x < 0.5*2^64 +// b_hi + b_lo = x + sqrt(x^2 - 1); +// acoshl(x) = logl_special(b_hi, b_lo); +// +// Algorithm description +//============================================================== +// +// I. Near 1 path algorithm +// ************************************************************** +// The formula is acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)), +// where y = 1, P(y)/Q(y) - rational approximation +// +// 1) y = x - 1, y2 = 2 * y +// +// 2) Compute in parallel sqrtl(2*y) and P(y)/Q(y) +// a) sqrtl computation method described below (main path algorithm, item 2)) +// As result we obtain (gg+gl) - multiprecision result +// as pair of double extended values +// b) P(y) and Q(y) calculated without any extra precision manipulations +// c) P/Q division: +// y = frcpa(Q) initial approximation of 1/Q +// z = P*y initial approximation of P/Q +// +// e = 1 - b*y +// e2 = e + e^2 +// e1 = e^2 +// y1 = y + y*e2 = y + y*(e+e^2) +// +// e3 = e + e1^2 +// y2 = y + y1*e3 = y + y*(e+e^2+..+e^6) +// +// r = P - Q*z +// e = 1 - Q*y2 +// xx = z + r*y2 high part of a/b +// +// y3 = y2 + y2*e4 +// r1 = P - Q*xx +// xl = r1*y3 low part of a/b +// +// 3) res = sqrt(2*y) - sqrt(2*y)*(P(y)/Q(y)) = +// = (gg+gl) - (gg + gl)*(xx+xl); +// +// a) hh = gg*xx; hl = gg*xl; lh = gl*xx; ll = gl*xl; +// b) res = ((((gl + ll) + lh) + hl) + hh) + gg; +// (exactly in this order) +// +// II. Main path algorithm +// ( thanks to Peter Markstein for the idea of sqrt(x^2+1) computation! ) +// ********************************************************************** +// +// There are 3 parts of x+sqrt(x^2-1) computation: +// +// 1) m2 = (m2_hi+m2_lo) = x^2-1 obtaining +// ------------------------------------ +// m2_hi = x2_hi - 1, where x2_hi = x * x; +// m2_lo = x2_lo + p1_lo, where +// x2_lo = FMS(x*x-x2_hi), +// p1_lo = (1 + m2_hi) - x2_hi; +// +// 2) g = (g_hi+g_lo) = sqrt(m2) = sqrt(m2_hi+m2_lo) +// ---------------------------------------------- +// r = invsqrt(m2_hi) (8-bit reciprocal square root approximation); +// g = m2_hi * r (first 8 bit-approximation of sqrt); +// +// h = 0.5 * r; +// e = 0.5 - g * h; +// g = g * e + g (second 16 bit-approximation of sqrt); +// +// h = h * e + h; +// e = 0.5 - g * h; +// g = g * e + g (third 32 bit-approximation of sqrt); +// +// h = h * e + h; +// e = 0.5 - g * h; +// g_hi = g * e + g (fourth 64 bit-approximation of sqrt); +// +// Remainder computation: +// h = h * e + h; +// d = (m2_hi - g_hi * g_hi) + m2_lo; +// g_lo = d * h; +// +// 3) b = (b_hi + b_lo) = x + g, where g = (g_hi + g_lo) = sqrt(x^2-1) +// ------------------------------------------------------------------- +// b_hi = (g_hi + x) + gl; +// b_lo = (x - b_hi) + g_hi + gl; +// +// Now we pass b presented as sum b_hi + b_lo to special version +// of logl function which accept a pair of arguments as +// mutiprecision value. +// +// Special log algorithm overview +// ================================ +// Here we use a table lookup method. The basic idea is that in +// order to compute logl(Arg) for an argument Arg in [1,2), +// we construct a value G such that G*Arg is close to 1 and that +// logl(1/G) is obtainable easily from a table of values calculated +// beforehand. Thus +// +// logl(Arg) = logl(1/G) + logl((G*Arg - 1)) +// +// Because |G*Arg - 1| is small, the second term on the right hand +// side can be approximated by a short polynomial. We elaborate +// this method in four steps. +// +// Step 0: Initialization +// +// We need to calculate logl( X+1 ). Obtain N, S_hi such that +// +// X = 2^N * ( S_hi + S_lo ) exactly +// +// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense +// that |S_lo| <= ulp(S_hi). +// +// For the special version of logl: S_lo = b_lo +// !-----------------------------------------------! +// +// Step 1: Argument Reduction +// +// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate +// +// G := G_1 * G_2 * G_3 +// r := (G * S_hi - 1) + G * S_lo +// +// These G_j's have the property that the product is exactly +// representable and that |r| < 2^(-12) as a result. +// +// Step 2: Approximation +// +// logl(1 + r) is approximated by a short polynomial poly(r). +// +// Step 3: Reconstruction +// +// Finally, logl( X ) = logl( X+1 ) is given by +// +// logl( X ) = logl( 2^N * (S_hi + S_lo) ) +// ~=~ N*logl(2) + logl(1/G) + logl(1 + r) +// ~=~ N*logl(2) + logl(1/G) + poly(r). +// +// For detailed description see logl or log1pl function, regular path. +// +// Registers used +//============================================================== +// Floating Point registers used: +// f8, input +// f32 -> f95 (64 registers) + +// General registers used: +// r32 -> r67 (36 registers) + +// Predicate registers used: +// p7 -> p11 +// p7 for 'NaNs, Inf' path +// p8 for 'near 1' path +// p9 for 'huges' path +// p10 for x = 1 +// p11 for x < 1 +// +//********************************************************************* +// IEEE Special Conditions: +// +// acoshl(+inf) = +inf +// acoshl(-inf) = QNaN +// acoshl(1) = 0 +// acoshl(x<1) = QNaN +// acoshl(SNaN) = QNaN +// acoshl(QNaN) = QNaN +// + +// Data tables +//============================================================== + +RODATA +.align 64 + +// Near 1 path rational aproximation coefficients +LOCAL_OBJECT_START(Poly_P) +data8 0xB0978143F695D40F, 0x3FF1 // .84205539791447100108478906277453574946e-4 +data8 0xB9800D841A8CAD29, 0x3FF6 // .28305085180397409672905983082168721069e-2 +data8 0xC889F455758C1725, 0x3FF9 // .24479844297887530847660233111267222945e-1 +data8 0x9BE1DFF006F45F12, 0x3FFB // .76114415657565879842941751209926938306e-1 +data8 0x9E34AF4D372861E0, 0x3FFB // .77248925727776366270605984806795850504e-1 +data8 0xF3DC502AEE14C4AE, 0x3FA6 // .3077953476682583606615438814166025592e-26 +LOCAL_OBJECT_END(Poly_P) + +// +LOCAL_OBJECT_START(Poly_Q) +data8 0xF76E3FD3C7680357, 0x3FF1 // .11798413344703621030038719253730708525e-3 +data8 0xD107D2E7273263AE, 0x3FF7 // .63791065024872525660782716786703188820e-2 +data8 0xB609BE5CDE206AEF, 0x3FFB // .88885771950814004376363335821980079985e-1 +data8 0xF7DEACAC28067C8A, 0x3FFD // .48412074662702495416825113623936037072302 +data8 0x8F9BE5890CEC7E38, 0x3FFF // 1.1219450873557867470217771071068369729526 +data8 0xED4F06F3D2BC92D1, 0x3FFE // .92698710873331639524734537734804056798748 +LOCAL_OBJECT_END(Poly_Q) + +// Q coeffs +LOCAL_OBJECT_START(Constants_Q) +data4 0x00000000,0xB1721800,0x00003FFE,0x00000000 +data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000 +data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000 +data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000 +data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000 +data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000 +LOCAL_OBJECT_END(Constants_Q) + +// Z1 - 16 bit fixed +LOCAL_OBJECT_START(Constants_Z_1) +data4 0x00008000 +data4 0x00007879 +data4 0x000071C8 +data4 0x00006BCB +data4 0x00006667 +data4 0x00006187 +data4 0x00005D18 +data4 0x0000590C +data4 0x00005556 +data4 0x000051EC +data4 0x00004EC5 +data4 0x00004BDB +data4 0x00004925 +data4 0x0000469F +data4 0x00004445 +data4 0x00004211 +LOCAL_OBJECT_END(Constants_Z_1) + +// G1 and H1 - IEEE single and h1 - IEEE double +LOCAL_OBJECT_START(Constants_G_H_h1) +data4 0x3F800000,0x00000000 +data8 0x0000000000000000 +data4 0x3F70F0F0,0x3D785196 +data8 0x3DA163A6617D741C +data4 0x3F638E38,0x3DF13843 +data8 0x3E2C55E6CBD3D5BB +data4 0x3F579430,0x3E2FF9A0 +data8 0xBE3EB0BFD86EA5E7 +data4 0x3F4CCCC8,0x3E647FD6 +data8 0x3E2E6A8C86B12760 +data4 0x3F430C30,0x3E8B3AE7 +data8 0x3E47574C5C0739BA +data4 0x3F3A2E88,0x3EA30C68 +data8 0x3E20E30F13E8AF2F +data4 0x3F321640,0x3EB9CEC8 +data8 0xBE42885BF2C630BD +data4 0x3F2AAAA8,0x3ECF9927 +data8 0x3E497F3497E577C6 +data4 0x3F23D708,0x3EE47FC5 +data8 0x3E3E6A6EA6B0A5AB +data4 0x3F1D89D8,0x3EF8947D +data8 0xBDF43E3CD328D9BE +data4 0x3F17B420,0x3F05F3A1 +data8 0x3E4094C30ADB090A +data4 0x3F124920,0x3F0F4303 +data8 0xBE28FBB2FC1FE510 +data4 0x3F0D3DC8,0x3F183EBF +data8 0x3E3A789510FDE3FA +data4 0x3F088888,0x3F20EC80 +data8 0x3E508CE57CC8C98F +data4 0x3F042108,0x3F29516A +data8 0xBE534874A223106C +LOCAL_OBJECT_END(Constants_G_H_h1) + +// Z2 - 16 bit fixed +LOCAL_OBJECT_START(Constants_Z_2) +data4 0x00008000 +data4 0x00007F81 +data4 0x00007F02 +data4 0x00007E85 +data4 0x00007E08 +data4 0x00007D8D +data4 0x00007D12 +data4 0x00007C98 +data4 0x00007C20 +data4 0x00007BA8 +data4 0x00007B31 +data4 0x00007ABB +data4 0x00007A45 +data4 0x000079D1 +data4 0x0000795D +data4 0x000078EB +LOCAL_OBJECT_END(Constants_Z_2) + +// G2 and H2 - IEEE single and h2 - IEEE double +LOCAL_OBJECT_START(Constants_G_H_h2) +data4 0x3F800000,0x00000000 +data8 0x0000000000000000 +data4 0x3F7F00F8,0x3B7F875D +data8 0x3DB5A11622C42273 +data4 0x3F7E03F8,0x3BFF015B +data8 0x3DE620CF21F86ED3 +data4 0x3F7D08E0,0x3C3EE393 +data8 0xBDAFA07E484F34ED +data4 0x3F7C0FC0,0x3C7E0586 +data8 0xBDFE07F03860BCF6 +data4 0x3F7B1880,0x3C9E75D2 +data8 0x3DEA370FA78093D6 +data4 0x3F7A2328,0x3CBDC97A +data8 0x3DFF579172A753D0 +data4 0x3F792FB0,0x3CDCFE47 +data8 0x3DFEBE6CA7EF896B +data4 0x3F783E08,0x3CFC15D0 +data8 0x3E0CF156409ECB43 +data4 0x3F774E38,0x3D0D874D +data8 0xBE0B6F97FFEF71DF +data4 0x3F766038,0x3D1CF49B +data8 0xBE0804835D59EEE8 +data4 0x3F757400,0x3D2C531D +data8 0x3E1F91E9A9192A74 +data4 0x3F748988,0x3D3BA322 +data8 0xBE139A06BF72A8CD +data4 0x3F73A0D0,0x3D4AE46F +data8 0x3E1D9202F8FBA6CF +data4 0x3F72B9D0,0x3D5A1756 +data8 0xBE1DCCC4BA796223 +data4 0x3F71D488,0x3D693B9D +data8 0xBE049391B6B7C239 +LOCAL_OBJECT_END(Constants_G_H_h2) + +// G3 and H3 - IEEE single and h3 - IEEE double +LOCAL_OBJECT_START(Constants_G_H_h3) +data4 0x3F7FFC00,0x38800100 +data8 0x3D355595562224CD +data4 0x3F7FF400,0x39400480 +data8 0x3D8200A206136FF6 +data4 0x3F7FEC00,0x39A00640 +data8 0x3DA4D68DE8DE9AF0 +data4 0x3F7FE400,0x39E00C41 +data8 0xBD8B4291B10238DC +data4 0x3F7FDC00,0x3A100A21 +data8 0xBD89CCB83B1952CA +data4 0x3F7FD400,0x3A300F22 +data8 0xBDB107071DC46826 +data4 0x3F7FCC08,0x3A4FF51C +data8 0x3DB6FCB9F43307DB +data4 0x3F7FC408,0x3A6FFC1D +data8 0xBD9B7C4762DC7872 +data4 0x3F7FBC10,0x3A87F20B +data8 0xBDC3725E3F89154A +data4 0x3F7FB410,0x3A97F68B +data8 0xBD93519D62B9D392 +data4 0x3F7FAC18,0x3AA7EB86 +data8 0x3DC184410F21BD9D +data4 0x3F7FA420,0x3AB7E101 +data8 0xBDA64B952245E0A6 +data4 0x3F7F9C20,0x3AC7E701 +data8 0x3DB4B0ECAABB34B8 +data4 0x3F7F9428,0x3AD7DD7B +data8 0x3D9923376DC40A7E +data4 0x3F7F8C30,0x3AE7D474 +data8 0x3DC6E17B4F2083D3 +data4 0x3F7F8438,0x3AF7CBED +data8 0x3DAE314B811D4394 +data4 0x3F7F7C40,0x3B03E1F3 +data8 0xBDD46F21B08F2DB1 +data4 0x3F7F7448,0x3B0BDE2F +data8 0xBDDC30A46D34522B +data4 0x3F7F6C50,0x3B13DAAA +data8 0x3DCB0070B1F473DB +data4 0x3F7F6458,0x3B1BD766 +data8 0xBDD65DDC6AD282FD +data4 0x3F7F5C68,0x3B23CC5C +data8 0xBDCDAB83F153761A +data4 0x3F7F5470,0x3B2BC997 +data8 0xBDDADA40341D0F8F +data4 0x3F7F4C78,0x3B33C711 +data8 0x3DCD1BD7EBC394E8 +data4 0x3F7F4488,0x3B3BBCC6 +data8 0xBDC3532B52E3E695 +data4 0x3F7F3C90,0x3B43BAC0 +data8 0xBDA3961EE846B3DE +data4 0x3F7F34A0,0x3B4BB0F4 +data8 0xBDDADF06785778D4 +data4 0x3F7F2CA8,0x3B53AF6D +data8 0x3DCC3ED1E55CE212 +data4 0x3F7F24B8,0x3B5BA620 +data8 0xBDBA31039E382C15 +data4 0x3F7F1CC8,0x3B639D12 +data8 0x3D635A0B5C5AF197 +data4 0x3F7F14D8,0x3B6B9444 +data8 0xBDDCCB1971D34EFC +data4 0x3F7F0CE0,0x3B7393BC +data8 0x3DC7450252CD7ADA +data4 0x3F7F04F0,0x3B7B8B6D +data8 0xBDB68F177D7F2A42 +LOCAL_OBJECT_END(Constants_G_H_h3) + +// Assembly macros +//============================================================== + +// Floating Point Registers + +FR_Arg = f8 +FR_Res = f8 + + +FR_PP0 = f32 +FR_PP1 = f33 +FR_PP2 = f34 +FR_PP3 = f35 +FR_PP4 = f36 +FR_PP5 = f37 +FR_QQ0 = f38 +FR_QQ1 = f39 +FR_QQ2 = f40 +FR_QQ3 = f41 +FR_QQ4 = f42 +FR_QQ5 = f43 + +FR_Q1 = f44 +FR_Q2 = f45 +FR_Q3 = f46 +FR_Q4 = f47 + +FR_Half = f48 +FR_Two = f49 + +FR_log2_hi = f50 +FR_log2_lo = f51 + + +FR_X2 = f52 +FR_M2 = f53 +FR_M2L = f54 +FR_Rcp = f55 +FR_GG = f56 +FR_HH = f57 +FR_EE = f58 +FR_DD = f59 +FR_GL = f60 +FR_Tmp = f61 + + +FR_XM1 = f62 +FR_2XM1 = f63 +FR_XM12 = f64 + + + + // Special logl registers +FR_XLog_Hi = f65 +FR_XLog_Lo = f66 + +FR_Y_hi = f67 +FR_Y_lo = f68 + +FR_S_hi = f69 +FR_S_lo = f70 + +FR_poly_lo = f71 +FR_poly_hi = f72 + +FR_G = f73 +FR_H = f74 +FR_h = f75 + +FR_G2 = f76 +FR_H2 = f77 +FR_h2 = f78 + +FR_r = f79 +FR_rsq = f80 +FR_rcub = f81 + +FR_float_N = f82 + +FR_G3 = f83 +FR_H3 = f84 +FR_h3 = f85 + +FR_2_to_minus_N = f86 + + + // Near 1 registers +FR_PP = f65 +FR_QQ = f66 + + +FR_PV6 = f69 +FR_PV4 = f70 +FR_PV3 = f71 +FR_PV2 = f72 + +FR_QV6 = f73 +FR_QV4 = f74 +FR_QV3 = f75 +FR_QV2 = f76 + +FR_Y0 = f77 +FR_Q0 = f78 +FR_E0 = f79 +FR_E2 = f80 +FR_E1 = f81 +FR_Y1 = f82 +FR_E3 = f83 +FR_Y2 = f84 +FR_R0 = f85 +FR_E4 = f86 +FR_Y3 = f87 +FR_R1 = f88 +FR_X_Hi = f89 +FR_X_lo = f90 + +FR_HH = f91 +FR_LL = f92 +FR_HL = f93 +FR_LH = f94 + + + + // Error handler registers +FR_Arg_X = f95 +FR_Arg_Y = f0 + + +// General Purpose Registers + + // General prolog registers +GR_PFS = r32 +GR_OneP125 = r33 +GR_TwoP63 = r34 +GR_Arg = r35 +GR_Half = r36 + + // Near 1 path registers +GR_Poly_P = r37 +GR_Poly_Q = r38 + + // Special logl registers +GR_Index1 = r39 +GR_Index2 = r40 +GR_signif = r41 +GR_X_0 = r42 +GR_X_1 = r43 +GR_X_2 = r44 +GR_minus_N = r45 +GR_Z_1 = r46 +GR_Z_2 = r47 +GR_N = r48 +GR_Bias = r49 +GR_M = r50 +GR_Index3 = r51 +GR_exp_2tom80 = r52 +GR_exp_mask = r53 +GR_exp_2tom7 = r54 +GR_ad_ln10 = r55 +GR_ad_tbl_1 = r56 +GR_ad_tbl_2 = r57 +GR_ad_tbl_3 = r58 +GR_ad_q = r59 +GR_ad_z_1 = r60 +GR_ad_z_2 = r61 +GR_ad_z_3 = r62 + +// +// Added for unwind support +// +GR_SAVE_PFS = r32 +GR_SAVE_B0 = r33 +GR_SAVE_GP = r34 + +GR_Parameter_X = r64 +GR_Parameter_Y = r65 +GR_Parameter_RESULT = r66 +GR_Parameter_TAG = r67 + + + +.section .text +GLOBAL_LIBM_ENTRY(acoshl) + +{ .mfi + alloc GR_PFS = ar.pfs,0,32,4,0 // Local frame allocation + fcmp.lt.s1 p11, p0 = FR_Arg, f1 // if arg is less than 1 + mov GR_Half = 0xfffe // 0.5's exp +} +{ .mfi + addl GR_Poly_Q = @ltoff(Poly_Q), gp // Address of Q-coeff table + fma.s1 FR_X2 = FR_Arg, FR_Arg, f0 // Obtain x^2 + addl GR_Poly_P = @ltoff(Poly_P), gp // Address of P-coeff table +};; + +{ .mfi + getf.d GR_Arg = FR_Arg // get arument as double (int64) + fma.s0 FR_Two = f1, f1, f1 // construct 2.0 + addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp // logl tables +} +{ .mlx + nop.m 0 + movl GR_TwoP63 = 0x43E8000000000000 // 0.5*2^63 (huge arguments) +};; + +{ .mfi + ld8 GR_Poly_P = [GR_Poly_P] // get actual P-coeff table address + fcmp.eq.s1 p10, p0 = FR_Arg, f1 // if arg == 1 (return 0) + nop.i 0 +} +{ .mlx + ld8 GR_Poly_Q = [GR_Poly_Q] // get actual Q-coeff table address + movl GR_OneP125 = 0x3FF2000000000000 // 1.125 (near 1 path bound) +};; + +{ .mfi + ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1 + fclass.m p7,p0 = FR_Arg, 0xe3 // if arg NaN inf + cmp.le p9, p0 = GR_TwoP63, GR_Arg // if arg > 0.5*2^63 ('huges') +} +{ .mfb + cmp.ge p8, p0 = GR_OneP125, GR_Arg // if arg<1.125 -near 1 path + fms.s1 FR_XM1 = FR_Arg, f1, f1 // X0 = X-1 (for near 1 path) +(p11) br.cond.spnt acoshl_lt_pone // error branch (less than 1) +};; + +{ .mmi + setf.exp FR_Half = GR_Half // construct 0.5 +(p9) setf.s FR_XLog_Lo = r0 // Low of logl arg=0 (Huges path) + mov GR_exp_mask = 0x1FFFF // Create exponent mask +};; + +{ .mmf +(p8) ldfe FR_PP5 = [GR_Poly_P],16 // Load P5 +(p8) ldfe FR_QQ5 = [GR_Poly_Q],16 // Load Q5 + fms.s1 FR_M2 = FR_X2, f1, f1 // m2 = x^2 - 1 +};; + +{ .mfi +(p8) ldfe FR_QQ4 = [GR_Poly_Q],16 // Load Q4 + fms.s1 FR_M2L = FR_Arg, FR_Arg, FR_X2 // low part of + // m2 = fma(X*X - m2) + add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1 +} +{ .mfb +(p8) ldfe FR_PP4 = [GR_Poly_P],16 // Load P4 +(p7) fma.s0 FR_Res = FR_Arg,f1,FR_Arg // r = a + a (Nan, Inf) +(p7) br.ret.spnt b0 // return (Nan, Inf) +};; + +{ .mfi +(p8) ldfe FR_PP3 = [GR_Poly_P],16 // Load P3 + nop.f 0 + add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P +} +{ .mfb +(p8) ldfe FR_QQ3 = [GR_Poly_Q],16 // Load Q3 +(p9) fms.s1 FR_XLog_Hi = FR_Two, FR_Arg, f1 // Hi of log arg = 2*X-1 +(p9) br.cond.spnt huges_logl // special version of log +} +;; + +{ .mfi +(p8) ldfe FR_PP2 = [GR_Poly_P],16 // Load P2 +(p8) fma.s1 FR_2XM1 = FR_Two, FR_XM1, f0 // 2X0 = 2 * X0 + add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2 +} +{ .mfb +(p8) ldfe FR_QQ2 = [GR_Poly_Q],16 // Load Q2 +(p10) fma.s0 FR_Res = f0,f1,f0 // r = 0 (arg = 1) +(p10) br.ret.spnt b0 // return (arg = 1) +};; + +{ .mmi +(p8) ldfe FR_PP1 = [GR_Poly_P],16 // Load P1 +(p8) ldfe FR_QQ1 = [GR_Poly_Q],16 // Load Q1 + add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2 +} +;; + +{ .mfi +(p8) ldfe FR_PP0 = [GR_Poly_P] // Load P0 + fma.s1 FR_Tmp = f1, f1, FR_M2 // Tmp = 1 + m2 + add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3 +} +{ .mfb +(p8) ldfe FR_QQ0 = [GR_Poly_Q] + nop.f 0 +(p8) br.cond.spnt near_1 // near 1 path +};; +{ .mfi + ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi + nop.f 0 + mov GR_Bias = 0x0FFFF // Create exponent bias +};; +{ .mfi + nop.m 0 + frsqrta.s1 FR_Rcp, p0 = FR_M2 // Rcp = 1/m2 reciprocal appr. + nop.i 0 +};; + +{ .mfi + ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo + fms.s1 FR_Tmp = FR_X2, f1, FR_Tmp // Tmp = x^2 - Tmp + nop.i 0 +};; + +{ .mfi + ldfe FR_Q4 = [GR_ad_q],16 // Load Q4 + fma.s1 FR_GG = FR_Rcp, FR_M2, f0 // g = Rcp * m2 + // 8 bit Newton Raphson iteration + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp + nop.i 0 +};; +{ .mfi + ldfe FR_Q3 = [GR_ad_q],16 // Load Q3 + fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_M2L = FR_Tmp, f1, FR_M2L // low part of m2 = Tmp+m2l + nop.i 0 +};; + +{ .mfi + ldfe FR_Q2 = [GR_ad_q],16 // Load Q2 + fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g + // 16 bit Newton Raphson iteration + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h + nop.i 0 +};; + +{ .mfi + ldfe FR_Q1 = [GR_ad_q] // Load Q1 + fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g + // 32 bit Newton Raphson iteration + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h + nop.i 0 +};; + +{ .mfi + nop.m 0 + fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g + // 64 bit Newton Raphson iteration + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h + nop.i 0 +};; + +{ .mfi + nop.m 0 + fnma.s1 FR_DD = FR_GG, FR_GG, FR_M2 // Remainder d = g * g - p2 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_XLog_Hi = FR_Arg, f1, FR_GG // bh = z + gh + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_DD = FR_DD, f1, FR_M2L // add p2l: d = d + p2l + nop.i 0 +};; + +{ .mfi + getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1 + nop.f 0 + mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h + extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif +} +{ .mfi + nop.m 0 + fma.s1 FR_XLog_Hi = FR_DD, FR_HH, FR_XLog_Hi // bh = bh + gl + nop.i 0 +};; + + + +{ .mmi + shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1 + shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1 + extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif. +};; + +{ .mmi + ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1 + nop.m 0 + nop.i 0 +};; + +{ .mmi + ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1 + nop.m 0 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fms.s1 FR_XLog_Lo = FR_Arg, f1, FR_XLog_Hi // bl = x - bh + pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1 +};; + +// WE CANNOT USE GR_X_1 IN NEXT 3 CYCLES BECAUSE OF POSSIBLE 10 CLOCKS STALL! +// "DEAD" ZONE! + +{ .mfi + nop.m 0 + nop.f 0 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x+1| + nop.i 0 +};; + + +{ .mmi + getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1 + ldfd FR_h = [GR_ad_tbl_1] // Load h_1 + nop.i 0 +};; + +{ .mfi + nop.m 0 + nop.f 0 + extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1 +};; + +{ .mfi + shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2 + fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GG // bl = bl + gg + mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80 +} +{ .mfi + shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2 + nop.f 0 + sub GR_N = GR_N, GR_Bias // sub bias from exp +};; + +{ .mmi + ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2 + ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2 + sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N) +};; + +{ .mmi + ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2 + nop.m 0 + nop.i 0 +};; + +{ .mmi + setf.sig FR_float_N = GR_N // Put integer N into rightmost sign + setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N) + pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2 +};; + +// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!) +// BECAUSE OF POSSIBLE 10 CLOCKS STALL! +// (Just nops added - nothing to do here) + +{ .mfi + nop.m 0 + fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GL // bl = bl + gl + nop.i 0 +};; +{ .mfi + nop.m 0 + nop.f 0 + nop.i 0 +};; +{ .mfi + nop.m 0 + nop.f 0 + nop.i 0 +};; + +{ .mfi + nop.m 0 + nop.f 0 + extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2 +};; + +{ .mfi + shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3 + nop.f 0 + nop.i 0 +};; + +{ .mfi + ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3 + nop.f 0 + nop.i 0 +};; + +{ .mfi + ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3 + fcvt.xf FR_float_N = FR_float_N + nop.i 0 +};; + +{ .mfi + nop.m 0 + fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2 + nop.i 0 +} +{ .mfi + nop.m 0 + fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_S_lo = FR_XLog_Lo, FR_2_to_minus_N, f0 //S_lo=S_lo*2^(-N) + nop.i 0 +};; + +{ .mfi + nop.m 0 + fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3 + nop.i 0 +} +{ .mfi + nop.m 0 + fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h=N*log2_lo+h + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_r = FR_G, FR_S_lo, FR_r // r=G*S_lo+(G*S_hi-1) + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3 + nop.i 0 +} +{ .mfi + nop.m 0 + fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h + nop.i 0 +};; + +{ .mfi + nop.m 0 + fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo + // Y_lo=poly_hi+poly_lo + nop.i 0 +};; + +{ .mfb + nop.m 0 + fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi + br.ret.sptk b0 // Common exit for 2^-7 < x < inf +};; + + +huges_logl: +{ .mmi + getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1 + mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7 + nop.i 0 +};; + +{ .mfi + add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1 + nop.f 0 + add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P +} +{ .mfi + add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2 + nop.f 0 + add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2 +};; + +{ .mfi + add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3 + nop.f 0 + extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif +};; + +{ .mfi + shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1 + nop.f 0 + extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif. +};; + +{ .mfi + ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1 + nop.f 0 + mov GR_exp_mask = 0x1FFFF // Create exponent mask +} +{ .mfi + shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1 + nop.f 0 + mov GR_Bias = 0x0FFFF // Create exponent bias +};; + +{ .mfi + ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1 + fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x| + nop.i 0 +};; + +{ .mmi + getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1 + ldfd FR_h = [GR_ad_tbl_1] // Load h_1 + nop.i 0 +};; + +{ .mfi + ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi + nop.f 0 + pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1 +};; + +{ .mmi + ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo + sub GR_N = GR_N, GR_Bias + mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80 +};; + +{ .mfi + ldfe FR_Q4 = [GR_ad_q],16 // Load Q4 + nop.f 0 + sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N) +};; + +{ .mmf + ldfe FR_Q3 = [GR_ad_q],16 // Load Q3 + setf.sig FR_float_N = GR_N // Put integer N into rightmost sign + nop.f 0 +};; + +{ .mmi + ldfe FR_Q2 = [GR_ad_q],16 // Load Q2 + nop.m 0 + extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1 +};; + +{ .mmi + ldfe FR_Q1 = [GR_ad_q] // Load Q1 + shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2 + nop.i 0 +};; + +{ .mmi + ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2 + shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2 + nop.i 0 +};; + +{ .mmi + ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2 + nop.m 0 + nop.i 0 +};; + +{ .mmf + ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2 + setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N) + nop.f 0 +};; + +{ .mfi + nop.m 0 + nop.f 0 + pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1*Z_2 +};; + +// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!) +// BECAUSE OF POSSIBLE 10 CLOCKS STALL! +// (Just nops added - nothing to do here) + +{ .mfi + nop.m 0 + nop.f 0 + nop.i 0 +};; + +{ .mfi + nop.m 0 + nop.f 0 + nop.i 0 +};; + +{ .mfi + nop.m 0 + nop.f 0 + nop.i 0 +};; + +{ .mfi + nop.m 0 + nop.f 0 + extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2 +};; + +{ .mfi + shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3 + fcvt.xf FR_float_N = FR_float_N + nop.i 0 +};; + +{ .mfi + ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3 + nop.f 0 + nop.i 0 +};; + +{ .mfi + ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3 + fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2 + nop.i 0 +} +{ .mfi + nop.m 0 + fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2 + nop.i 0 +};; + +{ .mmf + nop.m 0 + nop.m 0 + fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2 +};; + +{ .mfi + nop.m 0 + fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2)*G_3 + nop.i 0 +} +{ .mfi + nop.m 0 + fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2)+H_3 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h = N*log2_lo+h + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3 + nop.i 0 +} +{ .mfi + nop.m 0 + fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3 + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h + nop.i 0 +};; +{ .mfi + nop.m 0 + fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo=poly_hi+poly_lo + nop.i 0 +};; +{ .mfb + nop.m 0 + fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi + br.ret.sptk b0 // Common exit +};; + + +// NEAR ONE INTERVAL +near_1: +{ .mfi + nop.m 0 + frsqrta.s1 FR_Rcp, p0 = FR_2XM1 // Rcp = 1/x reciprocal appr. &SQRT& + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_PV6 = FR_PP5, FR_XM1, FR_PP4 // pv6 = P5*xm1+P4 $POLY$ + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_QV6 = FR_QQ5, FR_XM1, FR_QQ4 // qv6 = Q5*xm1+Q4 $POLY$ + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_PV4 = FR_PP3, FR_XM1, FR_PP2 // pv4 = P3*xm1+P2 $POLY$ + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_QV4 = FR_QQ3, FR_XM1, FR_QQ2 // qv4 = Q3*xm1+Q2 $POLY$ + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_XM12 = FR_XM1, FR_XM1, f0 // xm1^2 = xm1 * xm1 $POLY$ + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_PV2 = FR_PP1, FR_XM1, FR_PP0 // pv2 = P1*xm1+P0 $POLY$ + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_QV2 = FR_QQ1, FR_XM1, FR_QQ0 // qv2 = Q1*xm1+Q0 $POLY$ + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_GG = FR_Rcp, FR_2XM1, f0 // g = Rcp * x &SQRT& + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp &SQRT& + nop.i 0 +};; + + +{ .mfi + nop.m 0 + fma.s1 FR_PV3 = FR_XM12, FR_PV6, FR_PV4//pv3=pv6*xm1^2+pv4 $POLY$ + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_QV3 = FR_XM12, FR_QV6, FR_QV4//qv3=qv6*xm1^2+qv4 $POLY$ + nop.i 0 +};; + + +{ .mfi + nop.m 0 + fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h &SQRT& + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_PP = FR_XM12, FR_PV3, FR_PV2 //pp=pv3*xm1^2+pv2 $POLY$ + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_QQ = FR_XM12, FR_QV3, FR_QV2 //qq=qv3*xm1^2+qv2 $POLY$ + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT& + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT& + nop.i 0 +};; + +{ .mfi + nop.m 0 + frcpa.s1 FR_Y0,p0 = f1,FR_QQ // y = frcpa(b) #DIV# + nop.i 0 +} +{ .mfi + nop.m 0 + fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g*h &SQRT& + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_Q0 = FR_PP,FR_Y0,f0 // q = a*y #DIV# + nop.i 0 +} +{ .mfi + nop.m 0 + fnma.s1 FR_E0 = FR_Y0,FR_QQ,f1 // e = 1 - b*y #DIV# + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT& + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT& + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_E2 = FR_E0,FR_E0,FR_E0 // e2 = e+e^2 #DIV# + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_E1 = FR_E0,FR_E0,f0 // e1 = e^2 #DIV# + nop.i 0 +};; + +{ .mfi + nop.m 0 + fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h &SQRT& + nop.i 0 +} +{ .mfi + nop.m 0 + fnma.s1 FR_DD = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT& + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_Y1 = FR_Y0,FR_E2,FR_Y0 // y1 = y+y*e2 #DIV# + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_E3 = FR_E1,FR_E1,FR_E0 // e3 = e+e1^2 #DIV# + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_GG = FR_DD, FR_HH, FR_GG // g = d * h + g &SQRT& + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT& + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_Y2 = FR_Y1,FR_E3,FR_Y0 // y2 = y+y1*e3 #DIV# + nop.i 0 +} +{ .mfi + nop.m 0 + fnma.s1 FR_R0 = FR_QQ,FR_Q0,FR_PP // r = a-b*q #DIV# + nop.i 0 +};; + +{ .mfi + nop.m 0 + fnma.s1 FR_DD = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT& + nop.i 0 +};; + +{ .mfi + nop.m 0 + fnma.s1 FR_E4 = FR_QQ,FR_Y2,f1 // e4 = 1-b*y2 #DIV# + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_X_Hi = FR_R0,FR_Y2,FR_Q0 // x = q+r*y2 #DIV# + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h &SQRT& + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_Y3 = FR_Y2,FR_E4,FR_Y2 // y3 = y2+y2*e4 #DIV# + nop.i 0 +} +{ .mfi + nop.m 0 + fnma.s1 FR_R1 = FR_QQ,FR_X_Hi,FR_PP // r1 = a-b*x #DIV# + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_HH = FR_GG, FR_X_Hi, f0 // hh = gg * x_hi + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_LH = FR_GL, FR_X_Hi, f0 // lh = gl * x_hi + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_X_lo = FR_R1,FR_Y3,f0 // x_lo = r1*y3 #DIV# + nop.i 0 +};; + +{ .mfi + nop.m 0 + fma.s1 FR_LL = FR_GL, FR_X_lo, f0 // ll = gl*x_lo + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_HL = FR_GG, FR_X_lo, f0 // hl = gg * x_lo + nop.i 0 +};; + +{ .mfi + nop.m 0 + fms.s1 FR_Res = FR_GL, f1, FR_LL // res = gl + ll + nop.i 0 +};; + +{ .mfi + nop.m 0 + fms.s1 FR_Res = FR_Res, f1, FR_LH // res = res + lh + nop.i 0 +};; + +{ .mfi + nop.m 0 + fms.s1 FR_Res = FR_Res, f1, FR_HL // res = res + hl + nop.i 0 +};; + +{ .mfi + nop.m 0 + fms.s1 FR_Res = FR_Res, f1, FR_HH // res = res + hh + nop.i 0 +};; + +{ .mfb + nop.m 0 + fma.s0 FR_Res = FR_Res, f1, FR_GG // result = res + gg + br.ret.sptk b0 // Exit for near 1 path +};; +// NEAR ONE INTERVAL END + + + + +acoshl_lt_pone: +{ .mfi + nop.m 0 + fmerge.s FR_Arg_X = FR_Arg, FR_Arg + nop.i 0 +};; +{ .mfb + mov GR_Parameter_TAG = 135 + frcpa.s0 FR_Res,p0 = f0,f0 // get QNaN,and raise invalid + br.cond.sptk __libm_error_region // exit if x < 1.0 +};; + +GLOBAL_LIBM_END(acoshl) + + + +LOCAL_LIBM_ENTRY(__libm_error_region) +.prologue +{ .mfi + add GR_Parameter_Y = -32,sp // Parameter 2 value + nop.f 0 +.save ar.pfs,GR_SAVE_PFS + mov GR_SAVE_PFS = ar.pfs // Save ar.pfs +} +{ .mfi +.fframe 64 + add sp = -64,sp // Create new stack + nop.f 0 + mov GR_SAVE_GP = gp // Save gp +};; + +{ .mmi + stfe [GR_Parameter_Y] = FR_Arg_Y,16 // Parameter 2 to stack + add GR_Parameter_X = 16,sp // Parameter 1 address +.save b0,GR_SAVE_B0 + mov GR_SAVE_B0 = b0 // Save b0 +};; + +.body +{ .mib + stfe [GR_Parameter_X] = FR_Arg_X // Parameter 1 to stack + add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address + nop.b 0 +} +{ .mib + stfe [GR_Parameter_Y] = FR_Res // Parameter 3 to stack + add GR_Parameter_Y = -16,GR_Parameter_Y + br.call.sptk b0 = __libm_error_support# // Error handling function +};; + +{ .mmi + nop.m 0 + nop.m 0 + add GR_Parameter_RESULT = 48,sp +};; + +{ .mmi + ldfe f8 = [GR_Parameter_RESULT] // Get return res +.restore sp + add sp = 64,sp // Restore stack pointer + mov b0 = GR_SAVE_B0 // Restore return address +};; + +{ .mib + mov gp = GR_SAVE_GP // Restore gp + mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs + br.ret.sptk b0 // Return +};; + +LOCAL_LIBM_END(__libm_error_region#) + +.type __libm_error_support#,@function +.global __libm_error_support# + + + + |