diff options
author | Joseph Myers <joseph@codesourcery.com> | 2012-05-05 19:34:31 +0000 |
---|---|---|
committer | Joseph Myers <joseph@codesourcery.com> | 2012-05-05 19:34:31 +0000 |
commit | 6698b8bf4365f09d5bb467e113068f210811b001 (patch) | |
tree | c5f75e7f9736b2f4587f441c5e26b4982f66ce52 /sysdeps/i386 | |
parent | 7b17aeda0c5e83bc05060f4c09ae94f14502395b (diff) | |
download | glibc-6698b8bf4365f09d5bb467e113068f210811b001.tar.gz glibc-6698b8bf4365f09d5bb467e113068f210811b001.tar.xz glibc-6698b8bf4365f09d5bb467e113068f210811b001.zip |
Use .S sources for x86/x86_64 expl.
Diffstat (limited to 'sysdeps/i386')
-rw-r--r-- | sysdeps/i386/fpu/e_expl.S | 92 | ||||
-rw-r--r-- | sysdeps/i386/fpu/e_expl.c | 78 |
2 files changed, 92 insertions, 78 deletions
diff --git a/sysdeps/i386/fpu/e_expl.S b/sysdeps/i386/fpu/e_expl.S new file mode 100644 index 0000000000..a492c29a75 --- /dev/null +++ b/sysdeps/i386/fpu/e_expl.S @@ -0,0 +1,92 @@ +/* + * Written by J.T. Conklin <jtc@netbsd.org>. + * Public domain. + * + * Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>. + */ + +/* + * The 8087 method for the exponential function is to calculate + * exp(x) = 2^(x log2(e)) + * after separating integer and fractional parts + * x log2(e) = i + f, |f| <= .5 + * 2^i is immediate but f needs to be precise for long double accuracy. + * Suppress range reduction error in computing f by the following. + * Separate x into integer and fractional parts + * x = xi + xf, |xf| <= .5 + * Separate log2(e) into the sum of an exact number c0 and small part c1. + * c0 + c1 = log2(e) to extra precision + * Then + * f = (c0 xi - i) + c0 xf + c1 x + * where c0 xi is exact and so also is (c0 xi - i). + * -- moshier@na-net.ornl.gov + */ + +#include <machine/asm.h> + + .section .rodata.cst16,"aM",@progbits,16 + + .p2align 4 + ASM_TYPE_DIRECTIVE(c0,@object) +c0: .byte 0, 0, 0, 0, 0, 0, 0xaa, 0xb8, 0xff, 0x3f + .byte 0, 0, 0, 0, 0, 0 + ASM_SIZE_DIRECTIVE(c0) + ASM_TYPE_DIRECTIVE(c1,@object) +c1: .byte 0x20, 0xfa, 0xee, 0xc2, 0x5f, 0x70, 0xa5, 0xec, 0xed, 0x3f + .byte 0, 0, 0, 0, 0, 0 + ASM_SIZE_DIRECTIVE(c1) + +#ifdef PIC +# define MO(op) op##@GOTOFF(%ecx) +#else +# define MO(op) op +#endif + + .text +ENTRY(__ieee754_expl) + fldt 4(%esp) +/* I added the following ugly construct because expl(+-Inf) resulted + in NaN. The ugliness results from the bright minds at Intel. + For the i686 the code can be written better. + -- drepper@cygnus.com. */ + fxam /* Is NaN or +-Inf? */ +#ifdef PIC + LOAD_PIC_REG (cx) +#endif + fstsw %ax + movb $0x45, %dh + andb %ah, %dh + cmpb $0x05, %dh + je 1f /* Is +-Inf, jump. */ + fldl2e /* 1 log2(e) */ + fmul %st(1), %st /* 1 x log2(e) */ + frndint /* 1 i */ + fld %st(1) /* 2 x */ + frndint /* 2 xi */ + fld %st(1) /* 3 i */ + fldt MO(c0) /* 4 c0 */ + fld %st(2) /* 5 xi */ + fmul %st(1), %st /* 5 c0 xi */ + fsubp %st, %st(2) /* 4 f = c0 xi - i */ + fld %st(4) /* 5 x */ + fsub %st(3), %st /* 5 xf = x - xi */ + fmulp %st, %st(1) /* 4 c0 xf */ + faddp %st, %st(1) /* 3 f = f + c0 xf */ + fldt MO(c1) /* 4 */ + fmul %st(4), %st /* 4 c1 * x */ + faddp %st, %st(1) /* 3 f = f + c1 * x */ + f2xm1 /* 3 2^(fract(x * log2(e))) - 1 */ + fld1 /* 4 1.0 */ + faddp /* 3 2^(fract(x * log2(e))) */ + fstp %st(1) /* 2 */ + fscale /* 2 scale factor is st(1); e^x */ + fstp %st(1) /* 1 */ + fstp %st(1) /* 0 */ + jmp 2f +1: testl $0x200, %eax /* Test sign. */ + jz 2f /* If positive, jump. */ + fstp %st + fldz /* Set result to 0. */ +2: ret +END(__ieee754_expl) +strong_alias (__ieee754_expl, __expl_finite) diff --git a/sysdeps/i386/fpu/e_expl.c b/sysdeps/i386/fpu/e_expl.c deleted file mode 100644 index 8dc9581f70..0000000000 --- a/sysdeps/i386/fpu/e_expl.c +++ /dev/null @@ -1,78 +0,0 @@ -/* - * Written by J.T. Conklin <jtc@netbsd.org>. - * Public domain. - * - * Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>. - */ - -/* - * The 8087 method for the exponential function is to calculate - * exp(x) = 2^(x log2(e)) - * after separating integer and fractional parts - * x log2(e) = i + f, |f| <= .5 - * 2^i is immediate but f needs to be precise for long double accuracy. - * Suppress range reduction error in computing f by the following. - * Separate x into integer and fractional parts - * x = xi + xf, |xf| <= .5 - * Separate log2(e) into the sum of an exact number c0 and small part c1. - * c0 + c1 = log2(e) to extra precision - * Then - * f = (c0 xi - i) + c0 xf + c1 x - * where c0 xi is exact and so also is (c0 xi - i). - * -- moshier@na-net.ornl.gov - */ - -#include <math_private.h> - -static const long double c0 = 1.44268798828125L; -static const long double c1 = 7.05260771340735992468e-6L; - -long double -__ieee754_expl (long double x) -{ - long double res; - -/* I added the following ugly construct because expl(+-Inf) resulted - in NaN. The ugliness results from the bright minds at Intel. - For the i686 the code can be written better. - -- drepper@cygnus.com. */ - asm ("fxam\n\t" /* Is NaN or +-Inf? */ - "fstsw %%ax\n\t" - "movb $0x45, %%dh\n\t" - "andb %%ah, %%dh\n\t" - "cmpb $0x05, %%dh\n\t" - "je 1f\n\t" /* Is +-Inf, jump. */ - "fldl2e\n\t" /* 1 log2(e) */ - "fmul %%st(1),%%st\n\t" /* 1 x log2(e) */ - "frndint\n\t" /* 1 i */ - "fld %%st(1)\n\t" /* 2 x */ - "frndint\n\t" /* 2 xi */ - "fld %%st(1)\n\t" /* 3 i */ - "fldt %2\n\t" /* 4 c0 */ - "fld %%st(2)\n\t" /* 5 xi */ - "fmul %%st(1),%%st\n\t" /* 5 c0 xi */ - "fsubp %%st,%%st(2)\n\t" /* 4 f = c0 xi - i */ - "fld %%st(4)\n\t" /* 5 x */ - "fsub %%st(3),%%st\n\t" /* 5 xf = x - xi */ - "fmulp %%st,%%st(1)\n\t" /* 4 c0 xf */ - "faddp %%st,%%st(1)\n\t" /* 3 f = f + c0 xf */ - "fldt %3\n\t" /* 4 */ - "fmul %%st(4),%%st\n\t" /* 4 c1 * x */ - "faddp %%st,%%st(1)\n\t" /* 3 f = f + c1 * x */ - "f2xm1\n\t" /* 3 2^(fract(x * log2(e))) - 1 */ - "fld1\n\t" /* 4 1.0 */ - "faddp\n\t" /* 3 2^(fract(x * log2(e))) */ - "fstp %%st(1)\n\t" /* 2 */ - "fscale\n\t" /* 2 scale factor is st(1); e^x */ - "fstp %%st(1)\n\t" /* 1 */ - "fstp %%st(1)\n\t" /* 0 */ - "jmp 2f\n\t" - "1:\ttestl $0x200, %%eax\n\t" /* Test sign. */ - "jz 2f\n\t" /* If positive, jump. */ - "fstp %%st\n\t" - "fldz\n\t" /* Set result to 0. */ - "2:\t\n" - : "=t" (res) : "0" (x), "m" (c0), "m" (c1) : "ax", "dx"); - return res; -} -strong_alias (__ieee754_expl, __expl_finite) |