summary refs log tree commit diff
path: root/support
diff options
context:
space:
mode:
authorAdhemerval Zanella <adhemerval.zanella@linaro.org>2017-01-31 18:01:59 -0200
committerAdhemerval Zanella <adhemerval.zanella@linaro.org>2017-06-14 17:22:35 -0300
commit0edbf1230131dfeb03d843d2859e2104456fad80 (patch)
tree308321439470d11d70f6b84464d33021cf65f575 /support
parent5c3e322d3be3803636e38bcaf083fb59b3a34f0c (diff)
downloadglibc-0edbf1230131dfeb03d843d2859e2104456fad80.tar.gz
glibc-0edbf1230131dfeb03d843d2859e2104456fad80.tar.xz
glibc-0edbf1230131dfeb03d843d2859e2104456fad80.zip
nptl: Invert the mmap/mprotect logic on allocated stacks (BZ#18988)
Current allocate_stack logic for create stacks is to first mmap all
the required memory with the desirable memory and then mprotect the
guard area with PROT_NONE if required.  Although it works as expected,
it pessimizes the allocation because it requires the kernel to actually
increase commit charge (it counts against the available physical/swap
memory available for the system).

The only issue is to actually check this change since side-effects are
really Linux specific and to actually account them it would require a
kernel specific tests to parse the system wide information.  On the kernel
I checked /proc/self/statm does not show any meaningful difference for
vmm and/or rss before and after thread creation.  I could only see
really meaningful information checking on system wide /proc/meminfo
between thread creation: MemFree, MemAvailable, and Committed_AS shows
large difference without the patch.  I think trying to use these
kind of information on a testcase is fragile.

The BZ#18988 reports shows that the commit pages are easily seen with
mlockall (MCL_FUTURE) (with lock all pages that become mapped in the
process) however a more straighfoward testcase shows that pthread_create
could be faster using this patch:

--
static const int inner_count = 256;
static const int outer_count = 128;

static
void *thread1(void *arg)
{
  return NULL;
}

static
void *sleeper(void *arg)
{
  pthread_t ts[inner_count];
  for (int i = 0; i < inner_count; i++)
    pthread_create (&ts[i], &a, thread1, NULL);
  for (int i = 0; i < inner_count; i++)
    pthread_join (ts[i], NULL);

  return NULL;
}

int main(void)
{
  pthread_attr_init(&a);
  pthread_attr_setguardsize(&a, 1<<20);
  pthread_attr_setstacksize(&a, 1134592);

  pthread_t ts[outer_count];
  for (int i = 0; i < outer_count; i++)
    pthread_create(&ts[i], &a, sleeper, NULL);
  for (int i = 0; i < outer_count; i++)
    pthread_join(ts[i], NULL);
    assert(r == 0);
  }
  return 0;
}

--

On x86_64 (4.4.0-45-generic, gcc 5.4.0) running the small benchtests
I see:

$ time ./test

real	0m3.647s
user	0m0.080s
sys	0m11.836s

While with the patch I see:

$ time ./test

real	0m0.696s
user	0m0.040s
sys	0m1.152s

So I added a pthread_create benchtest (thread_create) which check
the thread creation latency.  As for the simple benchtests, I saw
improvements in thread creation on all architectures I tested the
change.

Checked on x86_64-linux-gnu, i686-linux-gnu, aarch64-linux-gnu,
arm-linux-gnueabihf, powerpc64le-linux-gnu, sparc64-linux-gnu,
and sparcv9-linux-gnu.

	[BZ #18988]
	* benchtests/thread_create-inputs: New file.
	* benchtests/thread_create-source.c: Likewise.
	* support/xpthread_attr_setguardsize.c: Likewise.
	* support/Makefile (libsupport-routines): Add
	xpthread_attr_setguardsize object.
	* support/xthread.h: Add xpthread_attr_setguardsize prototype.
	* benchtests/Makefile (bench-pthread): Add thread_create.
	* nptl/allocatestack.c (allocate_stack): Call mmap with PROT_NONE and
	then mprotect the required area.
Diffstat (limited to 'support')
-rw-r--r--support/Makefile1
-rw-r--r--support/xpthread_attr_setguardsize.c26
-rw-r--r--support/xthread.h2
3 files changed, 29 insertions, 0 deletions
diff --git a/support/Makefile b/support/Makefile
index 20b0343ade..a2480cdc70 100644
--- a/support/Makefile
+++ b/support/Makefile
@@ -82,6 +82,7 @@ libsupport-routines = \
   xpthread_attr_init \
   xpthread_attr_setdetachstate \
   xpthread_attr_setstacksize \
+  xpthread_attr_setguardsize \
   xpthread_barrier_destroy \
   xpthread_barrier_init \
   xpthread_barrier_wait \
diff --git a/support/xpthread_attr_setguardsize.c b/support/xpthread_attr_setguardsize.c
new file mode 100644
index 0000000000..35fed5d9ec
--- /dev/null
+++ b/support/xpthread_attr_setguardsize.c
@@ -0,0 +1,26 @@
+/* pthread_attr_setguardsize with error checking.
+   Copyright (C) 2017 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <http://www.gnu.org/licenses/>.  */
+
+#include <support/xthread.h>
+
+void
+xpthread_attr_setguardsize (pthread_attr_t *attr, size_t guardsize)
+{
+  xpthread_check_return ("pthread_attr_setguardize",
+			 pthread_attr_setguardsize (attr, guardsize));
+}
diff --git a/support/xthread.h b/support/xthread.h
index 6dd7e709be..3552a73e4f 100644
--- a/support/xthread.h
+++ b/support/xthread.h
@@ -67,6 +67,8 @@ void xpthread_attr_setdetachstate (pthread_attr_t *attr,
 				   int detachstate);
 void xpthread_attr_setstacksize (pthread_attr_t *attr,
 				 size_t stacksize);
+void xpthread_attr_setguardsize (pthread_attr_t *attr,
+				 size_t guardsize);
 
 /* This function returns non-zero if pthread_barrier_wait returned
    PTHREAD_BARRIER_SERIAL_THREAD.  */