summary refs log tree commit diff
path: root/string/rawmemchr.c
diff options
context:
space:
mode:
authorJakub Jelinek <jakub@redhat.com>2007-07-12 18:26:36 +0000
committerJakub Jelinek <jakub@redhat.com>2007-07-12 18:26:36 +0000
commit0ecb606cb6cf65de1d9fc8a919bceb4be476c602 (patch)
tree2ea1f8305970753e4a657acb2ccc15ca3eec8e2c /string/rawmemchr.c
parent7d58530341304d403a6626d7f7a1913165fe2f32 (diff)
downloadglibc-0ecb606cb6cf65de1d9fc8a919bceb4be476c602.tar.gz
glibc-0ecb606cb6cf65de1d9fc8a919bceb4be476c602.tar.xz
glibc-0ecb606cb6cf65de1d9fc8a919bceb4be476c602.zip
2.5-18.1
Diffstat (limited to 'string/rawmemchr.c')
-rw-r--r--string/rawmemchr.c189
1 files changed, 189 insertions, 0 deletions
diff --git a/string/rawmemchr.c b/string/rawmemchr.c
new file mode 100644
index 0000000000..cb00ad7e90
--- /dev/null
+++ b/string/rawmemchr.c
@@ -0,0 +1,189 @@
+/* Copyright (C) 1991,93,96,97,99,2000,2002 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
+   with help from Dan Sahlin (dan@sics.se) and
+   commentary by Jim Blandy (jimb@ai.mit.edu);
+   adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
+   and implemented by Roland McGrath (roland@ai.mit.edu).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#undef __ptr_t
+#if defined (__cplusplus) || (defined (__STDC__) && __STDC__)
+# define __ptr_t void *
+#else /* Not C++ or ANSI C.  */
+# define __ptr_t char *
+#endif /* C++ or ANSI C.  */
+
+#if defined (_LIBC)
+# include <string.h>
+# include <memcopy.h>
+# include <stdlib.h>
+#else
+# define reg_char char
+#endif
+
+#if defined (HAVE_LIMITS_H) || defined (_LIBC)
+# include <limits.h>
+#endif
+
+#define LONG_MAX_32_BITS 2147483647
+
+#ifndef LONG_MAX
+#define LONG_MAX LONG_MAX_32_BITS
+#endif
+
+#include <sys/types.h>
+
+#undef memchr
+
+
+/* Find the first occurrence of C in S.  */
+__ptr_t
+__rawmemchr (s, c_in)
+     const __ptr_t s;
+     int c_in;
+{
+  const unsigned char *char_ptr;
+  const unsigned long int *longword_ptr;
+  unsigned long int longword, magic_bits, charmask;
+  unsigned reg_char c;
+
+  c = (unsigned char) c_in;
+
+  /* Handle the first few characters by reading one character at a time.
+     Do this until CHAR_PTR is aligned on a longword boundary.  */
+  for (char_ptr = (const unsigned char *) s;
+       ((unsigned long int) char_ptr & (sizeof (longword) - 1)) != 0;
+       ++char_ptr)
+    if (*char_ptr == c)
+      return (__ptr_t) char_ptr;
+
+  /* All these elucidatory comments refer to 4-byte longwords,
+     but the theory applies equally well to 8-byte longwords.  */
+
+  longword_ptr = (unsigned long int *) char_ptr;
+
+  /* Bits 31, 24, 16, and 8 of this number are zero.  Call these bits
+     the "holes."  Note that there is a hole just to the left of
+     each byte, with an extra at the end:
+
+     bits:  01111110 11111110 11111110 11111111
+     bytes: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD
+
+     The 1-bits make sure that carries propagate to the next 0-bit.
+     The 0-bits provide holes for carries to fall into.  */
+
+  if (sizeof (longword) != 4 && sizeof (longword) != 8)
+    abort ();
+
+#if LONG_MAX <= LONG_MAX_32_BITS
+  magic_bits = 0x7efefeff;
+#else
+  magic_bits = ((unsigned long int) 0x7efefefe << 32) | 0xfefefeff;
+#endif
+
+  /* Set up a longword, each of whose bytes is C.  */
+  charmask = c | (c << 8);
+  charmask |= charmask << 16;
+#if LONG_MAX > LONG_MAX_32_BITS
+  charmask |= charmask << 32;
+#endif
+
+  /* Instead of the traditional loop which tests each character,
+     we will test a longword at a time.  The tricky part is testing
+     if *any of the four* bytes in the longword in question are zero.  */
+  while (1)
+    {
+      /* We tentatively exit the loop if adding MAGIC_BITS to
+	 LONGWORD fails to change any of the hole bits of LONGWORD.
+
+	 1) Is this safe?  Will it catch all the zero bytes?
+	 Suppose there is a byte with all zeros.  Any carry bits
+	 propagating from its left will fall into the hole at its
+	 least significant bit and stop.  Since there will be no
+	 carry from its most significant bit, the LSB of the
+	 byte to the left will be unchanged, and the zero will be
+	 detected.
+
+	 2) Is this worthwhile?  Will it ignore everything except
+	 zero bytes?  Suppose every byte of LONGWORD has a bit set
+	 somewhere.  There will be a carry into bit 8.  If bit 8
+	 is set, this will carry into bit 16.  If bit 8 is clear,
+	 one of bits 9-15 must be set, so there will be a carry
+	 into bit 16.  Similarly, there will be a carry into bit
+	 24.  If one of bits 24-30 is set, there will be a carry
+	 into bit 31, so all of the hole bits will be changed.
+
+	 The one misfire occurs when bits 24-30 are clear and bit
+	 31 is set; in this case, the hole at bit 31 is not
+	 changed.  If we had access to the processor carry flag,
+	 we could close this loophole by putting the fourth hole
+	 at bit 32!
+
+	 So it ignores everything except 128's, when they're aligned
+	 properly.
+
+	 3) But wait!  Aren't we looking for C, not zero?
+	 Good point.  So what we do is XOR LONGWORD with a longword,
+	 each of whose bytes is C.  This turns each byte that is C
+	 into a zero.  */
+
+      longword = *longword_ptr++ ^ charmask;
+
+      /* Add MAGIC_BITS to LONGWORD.  */
+      if ((((longword + magic_bits)
+
+	    /* Set those bits that were unchanged by the addition.  */
+	    ^ ~longword)
+
+	   /* Look at only the hole bits.  If any of the hole bits
+	      are unchanged, most likely one of the bytes was a
+	      zero.  */
+	   & ~magic_bits) != 0)
+	{
+	  /* Which of the bytes was C?  If none of them were, it was
+	     a misfire; continue the search.  */
+
+	  const unsigned char *cp = (const unsigned char *) (longword_ptr - 1);
+
+	  if (cp[0] == c)
+	    return (__ptr_t) cp;
+	  if (cp[1] == c)
+	    return (__ptr_t) &cp[1];
+	  if (cp[2] == c)
+	    return (__ptr_t) &cp[2];
+	  if (cp[3] == c)
+	    return (__ptr_t) &cp[3];
+#if LONG_MAX > 2147483647
+	  if (cp[4] == c)
+	    return (__ptr_t) &cp[4];
+	  if (cp[5] == c)
+	    return (__ptr_t) &cp[5];
+	  if (cp[6] == c)
+	    return (__ptr_t) &cp[6];
+	  if (cp[7] == c)
+	    return (__ptr_t) &cp[7];
+#endif
+	}
+    }
+}
+libc_hidden_def (__rawmemchr)
+weak_alias (__rawmemchr, rawmemchr)