diff options
author | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-07-01 11:03:51 -0500 |
---|---|---|
committer | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-08-29 11:55:41 -0500 |
commit | 1dbc54f61e281d3f2c1712dadd12864c42f8a64a (patch) | |
tree | 039c7754e2f843648b93acddbb5c4e92f4a74b06 /math/s_csqrt_template.c | |
parent | d47d27d6c08fa95c1ed49a8ce96cef2e37736b72 (diff) | |
download | glibc-1dbc54f61e281d3f2c1712dadd12864c42f8a64a.tar.gz glibc-1dbc54f61e281d3f2c1712dadd12864c42f8a64a.tar.xz glibc-1dbc54f61e281d3f2c1712dadd12864c42f8a64a.zip |
Prepare to convert remaining _Complex functions
This patch has no function changes, except to ensure the git history correctly tracks the changes to convert the double version of these functions into a templated version.
Diffstat (limited to 'math/s_csqrt_template.c')
-rw-r--r-- | math/s_csqrt_template.c | 165 |
1 files changed, 165 insertions, 0 deletions
diff --git a/math/s_csqrt_template.c b/math/s_csqrt_template.c new file mode 100644 index 0000000000..1f073e7f17 --- /dev/null +++ b/math/s_csqrt_template.c @@ -0,0 +1,165 @@ +/* Complex square root of double value. + Copyright (C) 1997-2016 Free Software Foundation, Inc. + This file is part of the GNU C Library. + Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>. + Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <http://www.gnu.org/licenses/>. */ + +#include <complex.h> +#include <math.h> +#include <math_private.h> +#include <float.h> + +__complex__ double +__csqrt (__complex__ double x) +{ + __complex__ double res; + int rcls = fpclassify (__real__ x); + int icls = fpclassify (__imag__ x); + + if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) + { + if (icls == FP_INFINITE) + { + __real__ res = HUGE_VAL; + __imag__ res = __imag__ x; + } + else if (rcls == FP_INFINITE) + { + if (__real__ x < 0.0) + { + __real__ res = icls == FP_NAN ? __nan ("") : 0; + __imag__ res = __copysign (HUGE_VAL, __imag__ x); + } + else + { + __real__ res = __real__ x; + __imag__ res = (icls == FP_NAN + ? __nan ("") : __copysign (0.0, __imag__ x)); + } + } + else + { + __real__ res = __nan (""); + __imag__ res = __nan (""); + } + } + else + { + if (__glibc_unlikely (icls == FP_ZERO)) + { + if (__real__ x < 0.0) + { + __real__ res = 0.0; + __imag__ res = __copysign (__ieee754_sqrt (-__real__ x), + __imag__ x); + } + else + { + __real__ res = fabs (__ieee754_sqrt (__real__ x)); + __imag__ res = __copysign (0.0, __imag__ x); + } + } + else if (__glibc_unlikely (rcls == FP_ZERO)) + { + double r; + if (fabs (__imag__ x) >= 2.0 * DBL_MIN) + r = __ieee754_sqrt (0.5 * fabs (__imag__ x)); + else + r = 0.5 * __ieee754_sqrt (2.0 * fabs (__imag__ x)); + + __real__ res = r; + __imag__ res = __copysign (r, __imag__ x); + } + else + { + double d, r, s; + int scale = 0; + + if (fabs (__real__ x) > DBL_MAX / 4.0) + { + scale = 1; + __real__ x = __scalbn (__real__ x, -2 * scale); + __imag__ x = __scalbn (__imag__ x, -2 * scale); + } + else if (fabs (__imag__ x) > DBL_MAX / 4.0) + { + scale = 1; + if (fabs (__real__ x) >= 4.0 * DBL_MIN) + __real__ x = __scalbn (__real__ x, -2 * scale); + else + __real__ x = 0.0; + __imag__ x = __scalbn (__imag__ x, -2 * scale); + } + else if (fabs (__real__ x) < 2.0 * DBL_MIN + && fabs (__imag__ x) < 2.0 * DBL_MIN) + { + scale = -((DBL_MANT_DIG + 1) / 2); + __real__ x = __scalbn (__real__ x, -2 * scale); + __imag__ x = __scalbn (__imag__ x, -2 * scale); + } + + d = __ieee754_hypot (__real__ x, __imag__ x); + /* Use the identity 2 Re res Im res = Im x + to avoid cancellation error in d +/- Re x. */ + if (__real__ x > 0) + { + r = __ieee754_sqrt (0.5 * (d + __real__ x)); + if (scale == 1 && fabs (__imag__ x) < 1.0) + { + /* Avoid possible intermediate underflow. */ + s = __imag__ x / r; + r = __scalbn (r, scale); + scale = 0; + } + else + s = 0.5 * (__imag__ x / r); + } + else + { + s = __ieee754_sqrt (0.5 * (d - __real__ x)); + if (scale == 1 && fabs (__imag__ x) < 1.0) + { + /* Avoid possible intermediate underflow. */ + r = fabs (__imag__ x / s); + s = __scalbn (s, scale); + scale = 0; + } + else + r = fabs (0.5 * (__imag__ x / s)); + } + + if (scale) + { + r = __scalbn (r, scale); + s = __scalbn (s, scale); + } + + math_check_force_underflow (r); + math_check_force_underflow (s); + + __real__ res = r; + __imag__ res = __copysign (s, __imag__ x); + } + } + + return res; +} +weak_alias (__csqrt, csqrt) +#ifdef NO_LONG_DOUBLE +strong_alias (__csqrt, __csqrtl) +weak_alias (__csqrt, csqrtl) +#endif |