about summary refs log tree commit diff
path: root/math/s_cexp.c
diff options
context:
space:
mode:
authorPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-06-28 14:28:04 -0500
committerPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-08-29 12:43:38 -0500
commitfeb62ddacb7b1d772d7383de0228a3977f07fc1e (patch)
tree963280635eb242a98f191744c196d55fadc2550f /math/s_cexp.c
parent1dbc54f61e281d3f2c1712dadd12864c42f8a64a (diff)
downloadglibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar.gz
glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar.xz
glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.zip
Convert remaining complex function to generated files
Convert cpow, clog, clog10, cexp, csqrt, and cproj functions
into generated templates.  Note, ldbl-opt still retains
s_clog10l.c as the aliasing rules are non-trivial.
Diffstat (limited to 'math/s_cexp.c')
-rw-r--r--math/s_cexp.c157
1 files changed, 0 insertions, 157 deletions
diff --git a/math/s_cexp.c b/math/s_cexp.c
deleted file mode 100644
index 3a476bde3c..0000000000
--- a/math/s_cexp.c
+++ /dev/null
@@ -1,157 +0,0 @@
-/* Return value of complex exponential function for double complex value.
-   Copyright (C) 1997-2016 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
-
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, see
-   <http://www.gnu.org/licenses/>.  */
-
-#include <complex.h>
-#include <fenv.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-__complex__ double
-__cexp (__complex__ double x)
-{
-  __complex__ double retval;
-  int rcls = fpclassify (__real__ x);
-  int icls = fpclassify (__imag__ x);
-
-  if (__glibc_likely (rcls >= FP_ZERO))
-    {
-      /* Real part is finite.  */
-      if (__glibc_likely (icls >= FP_ZERO))
-	{
-	  /* Imaginary part is finite.  */
-	  const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
-	  double sinix, cosix;
-
-	  if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
-	    {
-	      __sincos (__imag__ x, &sinix, &cosix);
-	    }
-	  else
-	    {
-	      sinix = __imag__ x;
-	      cosix = 1.0;
-	    }
-
-	  if (__real__ x > t)
-	    {
-	      double exp_t = __ieee754_exp (t);
-	      __real__ x -= t;
-	      sinix *= exp_t;
-	      cosix *= exp_t;
-	      if (__real__ x > t)
-		{
-		  __real__ x -= t;
-		  sinix *= exp_t;
-		  cosix *= exp_t;
-		}
-	    }
-	  if (__real__ x > t)
-	    {
-	      /* Overflow (original real part of x > 3t).  */
-	      __real__ retval = DBL_MAX * cosix;
-	      __imag__ retval = DBL_MAX * sinix;
-	    }
-	  else
-	    {
-	      double exp_val = __ieee754_exp (__real__ x);
-	      __real__ retval = exp_val * cosix;
-	      __imag__ retval = exp_val * sinix;
-	    }
-	  math_check_force_underflow_complex (retval);
-	}
-      else
-	{
-	  /* If the imaginary part is +-inf or NaN and the real part
-	     is not +-inf the result is NaN + iNaN.  */
-	  __real__ retval = __nan ("");
-	  __imag__ retval = __nan ("");
-
-	  feraiseexcept (FE_INVALID);
-	}
-    }
-  else if (__glibc_likely (rcls == FP_INFINITE))
-    {
-      /* Real part is infinite.  */
-      if (__glibc_likely (icls >= FP_ZERO))
-	{
-	  /* Imaginary part is finite.  */
-	  double value = signbit (__real__ x) ? 0.0 : HUGE_VAL;
-
-	  if (icls == FP_ZERO)
-	    {
-	      /* Imaginary part is 0.0.  */
-	      __real__ retval = value;
-	      __imag__ retval = __imag__ x;
-	    }
-	  else
-	    {
-	      double sinix, cosix;
-
-	      if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
-		{
-		  __sincos (__imag__ x, &sinix, &cosix);
-		}
-	      else
-		{
-		  sinix = __imag__ x;
-		  cosix = 1.0;
-		}
-
-	      __real__ retval = __copysign (value, cosix);
-	      __imag__ retval = __copysign (value, sinix);
-	    }
-	}
-      else if (signbit (__real__ x) == 0)
-	{
-	  __real__ retval = HUGE_VAL;
-	  __imag__ retval = __nan ("");
-
-	  if (icls == FP_INFINITE)
-	    feraiseexcept (FE_INVALID);
-	}
-      else
-	{
-	  __real__ retval = 0.0;
-	  __imag__ retval = __copysign (0.0, __imag__ x);
-	}
-    }
-  else
-    {
-      /* If the real part is NaN the result is NaN + iNaN unless the
-	 imaginary part is zero.  */
-      __real__ retval = __nan ("");
-      if (icls == FP_ZERO)
-	__imag__ retval = __imag__ x;
-      else
-	{
-	  __imag__ retval = __nan ("");
-
-	  if (rcls != FP_NAN || icls != FP_NAN)
-	    feraiseexcept (FE_INVALID);
-	}
-    }
-
-  return retval;
-}
-weak_alias (__cexp, cexp)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__cexp, __cexpl)
-weak_alias (__cexp, cexpl)
-#endif