about summary refs log tree commit diff
path: root/math/k_casinhl.c
diff options
context:
space:
mode:
authorPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-06-28 08:49:23 -0500
committerPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-08-19 16:46:41 -0500
commitc50eee19c447d3f2c182dc3a22f2b01a053dca41 (patch)
tree3b5f0d5c832bad20fce31502026f27fd6915ea8f /math/k_casinhl.c
parentffb84f5e197aaa9d46a35df84689c75d689d73cb (diff)
downloadglibc-c50eee19c447d3f2c182dc3a22f2b01a053dca41.tar.gz
glibc-c50eee19c447d3f2c182dc3a22f2b01a053dca41.tar.xz
glibc-c50eee19c447d3f2c182dc3a22f2b01a053dca41.zip
Convert _Complex sine functions to generated code
Refactor s_c{,a}sin{,h}{f,,l} into a single templated
macro.
Diffstat (limited to 'math/k_casinhl.c')
-rw-r--r--math/k_casinhl.c219
1 files changed, 0 insertions, 219 deletions
diff --git a/math/k_casinhl.c b/math/k_casinhl.c
deleted file mode 100644
index 7c4b9c36bf..0000000000
--- a/math/k_casinhl.c
+++ /dev/null
@@ -1,219 +0,0 @@
-/* Return arc hyperbole sine for long double value, with the imaginary
-   part of the result possibly adjusted for use in computing other
-   functions.
-   Copyright (C) 1997-2016 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
-
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, see
-   <http://www.gnu.org/licenses/>.  */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-/* To avoid spurious overflows, use this definition to treat IBM long
-   double as approximating an IEEE-style format.  */
-#if LDBL_MANT_DIG == 106
-# undef LDBL_EPSILON
-# define LDBL_EPSILON 0x1p-106L
-#endif
-
-/* Return the complex inverse hyperbolic sine of finite nonzero Z,
-   with the imaginary part of the result subtracted from pi/2 if ADJ
-   is nonzero.  */
-
-__complex__ long double
-__kernel_casinhl (__complex__ long double x, int adj)
-{
-  __complex__ long double res;
-  long double rx, ix;
-  __complex__ long double y;
-
-  /* Avoid cancellation by reducing to the first quadrant.  */
-  rx = fabsl (__real__ x);
-  ix = fabsl (__imag__ x);
-
-  if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON)
-    {
-      /* For large x in the first quadrant, x + csqrt (1 + x * x)
-	 is sufficiently close to 2 * x to make no significant
-	 difference to the result; avoid possible overflow from
-	 the squaring and addition.  */
-      __real__ y = rx;
-      __imag__ y = ix;
-
-      if (adj)
-	{
-	  long double t = __real__ y;
-	  __real__ y = __copysignl (__imag__ y, __imag__ x);
-	  __imag__ y = t;
-	}
-
-      res = __clogl (y);
-      __real__ res += M_LN2l;
-    }
-  else if (rx >= 0.5L && ix < LDBL_EPSILON / 8.0L)
-    {
-      long double s = __ieee754_hypotl (1.0L, rx);
-
-      __real__ res = __ieee754_logl (rx + s);
-      if (adj)
-	__imag__ res = __ieee754_atan2l (s, __imag__ x);
-      else
-	__imag__ res = __ieee754_atan2l (ix, s);
-    }
-  else if (rx < LDBL_EPSILON / 8.0L && ix >= 1.5L)
-    {
-      long double s = __ieee754_sqrtl ((ix + 1.0L) * (ix - 1.0L));
-
-      __real__ res = __ieee754_logl (ix + s);
-      if (adj)
-	__imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x));
-      else
-	__imag__ res = __ieee754_atan2l (s, rx);
-    }
-  else if (ix > 1.0L && ix < 1.5L && rx < 0.5L)
-    {
-      if (rx < LDBL_EPSILON * LDBL_EPSILON)
-	{
-	  long double ix2m1 = (ix + 1.0L) * (ix - 1.0L);
-	  long double s = __ieee754_sqrtl (ix2m1);
-
-	  __real__ res = __log1pl (2.0L * (ix2m1 + ix * s)) / 2.0L;
-	  if (adj)
-	    __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x));
-	  else
-	    __imag__ res = __ieee754_atan2l (s, rx);
-	}
-      else
-	{
-	  long double ix2m1 = (ix + 1.0L) * (ix - 1.0L);
-	  long double rx2 = rx * rx;
-	  long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix);
-	  long double d = __ieee754_sqrtl (ix2m1 * ix2m1 + f);
-	  long double dp = d + ix2m1;
-	  long double dm = f / dp;
-	  long double r1 = __ieee754_sqrtl ((dm + rx2) / 2.0L);
-	  long double r2 = rx * ix / r1;
-
-	  __real__ res
-	    = __log1pl (rx2 + dp + 2.0L * (rx * r1 + ix * r2)) / 2.0L;
-	  if (adj)
-	    __imag__ res = __ieee754_atan2l (rx + r1, __copysignl (ix + r2,
-								   __imag__ x));
-	  else
-	    __imag__ res = __ieee754_atan2l (ix + r2, rx + r1);
-	}
-    }
-  else if (ix == 1.0L && rx < 0.5L)
-    {
-      if (rx < LDBL_EPSILON / 8.0L)
-	{
-	  __real__ res = __log1pl (2.0L * (rx + __ieee754_sqrtl (rx))) / 2.0L;
-	  if (adj)
-	    __imag__ res = __ieee754_atan2l (__ieee754_sqrtl (rx),
-					     __copysignl (1.0L, __imag__ x));
-	  else
-	    __imag__ res = __ieee754_atan2l (1.0L, __ieee754_sqrtl (rx));
-	}
-      else
-	{
-	  long double d = rx * __ieee754_sqrtl (4.0L + rx * rx);
-	  long double s1 = __ieee754_sqrtl ((d + rx * rx) / 2.0L);
-	  long double s2 = __ieee754_sqrtl ((d - rx * rx) / 2.0L);
-
-	  __real__ res = __log1pl (rx * rx + d + 2.0L * (rx * s1 + s2)) / 2.0L;
-	  if (adj)
-	    __imag__ res = __ieee754_atan2l (rx + s1,
-					     __copysignl (1.0L + s2,
-							  __imag__ x));
-	  else
-	    __imag__ res = __ieee754_atan2l (1.0L + s2, rx + s1);
-	}
-    }
-  else if (ix < 1.0L && rx < 0.5L)
-    {
-      if (ix >= LDBL_EPSILON)
-	{
-	  if (rx < LDBL_EPSILON * LDBL_EPSILON)
-	    {
-	      long double onemix2 = (1.0L + ix) * (1.0L - ix);
-	      long double s = __ieee754_sqrtl (onemix2);
-
-	      __real__ res = __log1pl (2.0L * rx / s) / 2.0L;
-	      if (adj)
-		__imag__ res = __ieee754_atan2l (s, __imag__ x);
-	      else
-		__imag__ res = __ieee754_atan2l (ix, s);
-	    }
-	  else
-	    {
-	      long double onemix2 = (1.0L + ix) * (1.0L - ix);
-	      long double rx2 = rx * rx;
-	      long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix);
-	      long double d = __ieee754_sqrtl (onemix2 * onemix2 + f);
-	      long double dp = d + onemix2;
-	      long double dm = f / dp;
-	      long double r1 = __ieee754_sqrtl ((dp + rx2) / 2.0L);
-	      long double r2 = rx * ix / r1;
-
-	      __real__ res
-		= __log1pl (rx2 + dm + 2.0L * (rx * r1 + ix * r2)) / 2.0L;
-	      if (adj)
-		__imag__ res = __ieee754_atan2l (rx + r1,
-						 __copysignl (ix + r2,
-							      __imag__ x));
-	      else
-		__imag__ res = __ieee754_atan2l (ix + r2, rx + r1);
-	    }
-	}
-      else
-	{
-	  long double s = __ieee754_hypotl (1.0L, rx);
-
-	  __real__ res = __log1pl (2.0L * rx * (rx + s)) / 2.0L;
-	  if (adj)
-	    __imag__ res = __ieee754_atan2l (s, __imag__ x);
-	  else
-	    __imag__ res = __ieee754_atan2l (ix, s);
-	}
-      math_check_force_underflow_nonneg (__real__ res);
-    }
-  else
-    {
-      __real__ y = (rx - ix) * (rx + ix) + 1.0L;
-      __imag__ y = 2.0L * rx * ix;
-
-      y = __csqrtl (y);
-
-      __real__ y += rx;
-      __imag__ y += ix;
-
-      if (adj)
-	{
-	  long double t = __real__ y;
-	  __real__ y = __copysignl (__imag__ y, __imag__ x);
-	  __imag__ y = t;
-	}
-
-      res = __clogl (y);
-    }
-
-  /* Give results the correct sign for the original argument.  */
-  __real__ res = __copysignl (__real__ res, __real__ x);
-  __imag__ res = __copysignl (__imag__ res, (adj ? 1.0L : __imag__ x));
-
-  return res;
-}