diff options
author | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-06-28 08:49:23 -0500 |
---|---|---|
committer | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-08-19 16:46:41 -0500 |
commit | c50eee19c447d3f2c182dc3a22f2b01a053dca41 (patch) | |
tree | 3b5f0d5c832bad20fce31502026f27fd6915ea8f /math/k_casinhl.c | |
parent | ffb84f5e197aaa9d46a35df84689c75d689d73cb (diff) | |
download | glibc-c50eee19c447d3f2c182dc3a22f2b01a053dca41.tar.gz glibc-c50eee19c447d3f2c182dc3a22f2b01a053dca41.tar.xz glibc-c50eee19c447d3f2c182dc3a22f2b01a053dca41.zip |
Convert _Complex sine functions to generated code
Refactor s_c{,a}sin{,h}{f,,l} into a single templated macro.
Diffstat (limited to 'math/k_casinhl.c')
-rw-r--r-- | math/k_casinhl.c | 219 |
1 files changed, 0 insertions, 219 deletions
diff --git a/math/k_casinhl.c b/math/k_casinhl.c deleted file mode 100644 index 7c4b9c36bf..0000000000 --- a/math/k_casinhl.c +++ /dev/null @@ -1,219 +0,0 @@ -/* Return arc hyperbole sine for long double value, with the imaginary - part of the result possibly adjusted for use in computing other - functions. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <complex.h> -#include <math.h> -#include <math_private.h> -#include <float.h> - -/* To avoid spurious overflows, use this definition to treat IBM long - double as approximating an IEEE-style format. */ -#if LDBL_MANT_DIG == 106 -# undef LDBL_EPSILON -# define LDBL_EPSILON 0x1p-106L -#endif - -/* Return the complex inverse hyperbolic sine of finite nonzero Z, - with the imaginary part of the result subtracted from pi/2 if ADJ - is nonzero. */ - -__complex__ long double -__kernel_casinhl (__complex__ long double x, int adj) -{ - __complex__ long double res; - long double rx, ix; - __complex__ long double y; - - /* Avoid cancellation by reducing to the first quadrant. */ - rx = fabsl (__real__ x); - ix = fabsl (__imag__ x); - - if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON) - { - /* For large x in the first quadrant, x + csqrt (1 + x * x) - is sufficiently close to 2 * x to make no significant - difference to the result; avoid possible overflow from - the squaring and addition. */ - __real__ y = rx; - __imag__ y = ix; - - if (adj) - { - long double t = __real__ y; - __real__ y = __copysignl (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = __clogl (y); - __real__ res += M_LN2l; - } - else if (rx >= 0.5L && ix < LDBL_EPSILON / 8.0L) - { - long double s = __ieee754_hypotl (1.0L, rx); - - __real__ res = __ieee754_logl (rx + s); - if (adj) - __imag__ res = __ieee754_atan2l (s, __imag__ x); - else - __imag__ res = __ieee754_atan2l (ix, s); - } - else if (rx < LDBL_EPSILON / 8.0L && ix >= 1.5L) - { - long double s = __ieee754_sqrtl ((ix + 1.0L) * (ix - 1.0L)); - - __real__ res = __ieee754_logl (ix + s); - if (adj) - __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x)); - else - __imag__ res = __ieee754_atan2l (s, rx); - } - else if (ix > 1.0L && ix < 1.5L && rx < 0.5L) - { - if (rx < LDBL_EPSILON * LDBL_EPSILON) - { - long double ix2m1 = (ix + 1.0L) * (ix - 1.0L); - long double s = __ieee754_sqrtl (ix2m1); - - __real__ res = __log1pl (2.0L * (ix2m1 + ix * s)) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x)); - else - __imag__ res = __ieee754_atan2l (s, rx); - } - else - { - long double ix2m1 = (ix + 1.0L) * (ix - 1.0L); - long double rx2 = rx * rx; - long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix); - long double d = __ieee754_sqrtl (ix2m1 * ix2m1 + f); - long double dp = d + ix2m1; - long double dm = f / dp; - long double r1 = __ieee754_sqrtl ((dm + rx2) / 2.0L); - long double r2 = rx * ix / r1; - - __real__ res - = __log1pl (rx2 + dp + 2.0L * (rx * r1 + ix * r2)) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (rx + r1, __copysignl (ix + r2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2l (ix + r2, rx + r1); - } - } - else if (ix == 1.0L && rx < 0.5L) - { - if (rx < LDBL_EPSILON / 8.0L) - { - __real__ res = __log1pl (2.0L * (rx + __ieee754_sqrtl (rx))) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (__ieee754_sqrtl (rx), - __copysignl (1.0L, __imag__ x)); - else - __imag__ res = __ieee754_atan2l (1.0L, __ieee754_sqrtl (rx)); - } - else - { - long double d = rx * __ieee754_sqrtl (4.0L + rx * rx); - long double s1 = __ieee754_sqrtl ((d + rx * rx) / 2.0L); - long double s2 = __ieee754_sqrtl ((d - rx * rx) / 2.0L); - - __real__ res = __log1pl (rx * rx + d + 2.0L * (rx * s1 + s2)) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (rx + s1, - __copysignl (1.0L + s2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2l (1.0L + s2, rx + s1); - } - } - else if (ix < 1.0L && rx < 0.5L) - { - if (ix >= LDBL_EPSILON) - { - if (rx < LDBL_EPSILON * LDBL_EPSILON) - { - long double onemix2 = (1.0L + ix) * (1.0L - ix); - long double s = __ieee754_sqrtl (onemix2); - - __real__ res = __log1pl (2.0L * rx / s) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (s, __imag__ x); - else - __imag__ res = __ieee754_atan2l (ix, s); - } - else - { - long double onemix2 = (1.0L + ix) * (1.0L - ix); - long double rx2 = rx * rx; - long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix); - long double d = __ieee754_sqrtl (onemix2 * onemix2 + f); - long double dp = d + onemix2; - long double dm = f / dp; - long double r1 = __ieee754_sqrtl ((dp + rx2) / 2.0L); - long double r2 = rx * ix / r1; - - __real__ res - = __log1pl (rx2 + dm + 2.0L * (rx * r1 + ix * r2)) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (rx + r1, - __copysignl (ix + r2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2l (ix + r2, rx + r1); - } - } - else - { - long double s = __ieee754_hypotl (1.0L, rx); - - __real__ res = __log1pl (2.0L * rx * (rx + s)) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (s, __imag__ x); - else - __imag__ res = __ieee754_atan2l (ix, s); - } - math_check_force_underflow_nonneg (__real__ res); - } - else - { - __real__ y = (rx - ix) * (rx + ix) + 1.0L; - __imag__ y = 2.0L * rx * ix; - - y = __csqrtl (y); - - __real__ y += rx; - __imag__ y += ix; - - if (adj) - { - long double t = __real__ y; - __real__ y = __copysignl (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = __clogl (y); - } - - /* Give results the correct sign for the original argument. */ - __real__ res = __copysignl (__real__ res, __real__ x); - __imag__ res = __copysignl (__imag__ res, (adj ? 1.0L : __imag__ x)); - - return res; -} |