summary refs log tree commit diff
path: root/manual
diff options
context:
space:
mode:
authorJason A. Donenfeld <Jason@zx2c4.com>2022-07-26 21:58:22 +0200
committerAdhemerval Zanella <adhemerval.zanella@linaro.org>2022-07-27 08:58:27 -0300
commiteaad4f9e8f07fc43618f6c8635a7e82831a423dd (patch)
tree3797516dc1f679d844b37a843b64811dd33af80d /manual
parent3a380458201262ed01d913a1d9e3ff73d0166043 (diff)
downloadglibc-eaad4f9e8f07fc43618f6c8635a7e82831a423dd.tar.gz
glibc-eaad4f9e8f07fc43618f6c8635a7e82831a423dd.tar.xz
glibc-eaad4f9e8f07fc43618f6c8635a7e82831a423dd.zip
arc4random: simplify design for better safety
Rather than buffering 16 MiB of entropy in userspace (by way of
chacha20), simply call getrandom() every time.

This approach is doubtlessly slower, for now, but trying to prematurely
optimize arc4random appears to be leading toward all sorts of nasty
properties and gotchas. Instead, this patch takes a much more
conservative approach. The interface is added as a basic loop wrapper
around getrandom(), and then later, the kernel and libc together can
work together on optimizing that.

This prevents numerous issues in which userspace is unaware of when it
really must throw away its buffer, since we avoid buffering all
together. Future improvements may include userspace learning more from
the kernel about when to do that, which might make these sorts of
chacha20-based optimizations more possible. The current heuristic of 16
MiB is meaningless garbage that doesn't correspond to anything the
kernel might know about. So for now, let's just do something
conservative that we know is correct and won't lead to cryptographic
issues for users of this function.

This patch might be considered along the lines of, "optimization is the
root of all evil," in that the much more complex implementation it
replaces moves too fast without considering security implications,
whereas the incremental approach done here is a much safer way of going
about things. Once this lands, we can take our time in optimizing this
properly using new interplay between the kernel and userspace.

getrandom(0) is used, since that's the one that ensures the bytes
returned are cryptographically secure. But on systems without it, we
fallback to using /dev/urandom. This is unfortunate because it means
opening a file descriptor, but there's not much of a choice. Secondly,
as part of the fallback, in order to get more or less the same
properties of getrandom(0), we poll on /dev/random, and if the poll
succeeds at least once, then we assume the RNG is initialized. This is a
rough approximation, as the ancient "non-blocking pool" initialized
after the "blocking pool", not before, and it may not port back to all
ancient kernels, though it does to all kernels supported by glibc
(≥3.2), so generally it's the best approximation we can do.

The motivation for including arc4random, in the first place, is to have
source-level compatibility with existing code. That means this patch
doesn't attempt to litigate the interface itself. It does, however,
choose a conservative approach for implementing it.

Cc: Adhemerval Zanella Netto <adhemerval.zanella@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Cristian Rodríguez <crrodriguez@opensuse.org>
Cc: Paul Eggert <eggert@cs.ucla.edu>
Cc: Mark Harris <mark.hsj@gmail.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>

Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
Diffstat (limited to 'manual')
-rw-r--r--manual/math.texi13
1 files changed, 3 insertions, 10 deletions
diff --git a/manual/math.texi b/manual/math.texi
index 76132e9cd5..7f0499ab8d 100644
--- a/manual/math.texi
+++ b/manual/math.texi
@@ -1993,17 +1993,10 @@ This section describes the random number functions provided as a GNU
 extension, based on OpenBSD interfaces.
 
 @Theglibc{} uses kernel entropy obtained either through @code{getrandom}
-or by reading @file{/dev/urandom} to seed and periodically re-seed the
-internal state.  A per-thread data pool is used, which allows fast output
-generation.
+or by reading @file{/dev/urandom} to seed.
 
-Although these functions provide higher random quality than ISO, BSD, and
-SVID functions, these still use a Pseudo-Random generator and should not
-be used in cryptographic contexts.
-
-The internal state is cleared and reseeded with kernel entropy on @code{fork}
-and @code{_Fork}.  It is not cleared on either a direct @code{clone} syscall
-or when using @theglibc{} @code{syscall} function.
+These functions provide higher random quality than ISO, BSD, and SVID
+functions, and may be used in cryptographic contexts.
 
 The prototypes for these functions are in @file{stdlib.h}.
 @pindex stdlib.h