summary refs log tree commit diff
path: root/hesiod
diff options
context:
space:
mode:
authorKrzysztof Koch <Krzysztof.Koch@arm.com>2019-11-13 11:57:17 +0000
committerSzabolcs Nagy <szabolcs.nagy@arm.com>2019-11-13 14:18:52 +0000
commit15740788d79447d863b88a5434f09d488d4088d3 (patch)
tree6bc64cbdea84a81b1671c77bd6e8f09eb1176b36 /hesiod
parent02132c0f4c78f77d4a8cdbdea8f02956347e29ab (diff)
downloadglibc-15740788d79447d863b88a5434f09d488d4088d3.tar.gz
glibc-15740788d79447d863b88a5434f09d488d4088d3.tar.xz
glibc-15740788d79447d863b88a5434f09d488d4088d3.zip
Add new script for plotting string benchmark JSON output
Add a script for visualizing the JSON output generated by existing
glibc string microbenchmarks.

Overview:
plot_strings.py is capable of plotting benchmark results in the
following formats, which are controlled with the -p or --plot argument:
1. absolute timings (-p time): plot the timings as they are in the
input benchmark results file.
2. relative timings (-p rel): plot relative timing difference with
respect to a chosen ifunc (controlled with -b argument).
3. performance relative to max (-p max): for each varied parameter
value, plot 1/timing as the percentage of the maximum value out of
the plotted ifuncs.
4. throughput (-p thru): plot varied parameter value over timing

For all types of graphs, there is an option to explicitly specify
the subset of ifuncs to plot using the --ifuncs parameter.

For plot types 1. and 4. one can hide/expose exact benchmark figures
using the --values flag.

When plotting relative timing differences between ifuncs, the first
ifunc listed in the input JSON file is the baseline, unless the
baseline implementation is explicitly chosen with the --baseline
parameter. For the ease of reading, the script marks the statistically
insignificant range on the graphs. The default is +-5% but this
value can be controlled with the --threshold parameter.

To accommodate for the heterogeneity in benchmark results files,
one can control i.e the x-axis scale, the resolution (dpi) of the
generated figures or the key to access the varied parameter value
in the JSON file. The corresponding options are --logarithmic,
--resolution or --key. The --key parameter ensures that plot_strings.py
works with all files which pass JSON schema validation. The schema
can be chosen with the --schema parameter.

If a window manager is available, one can enable interactive
figure display using the --display flag.

Finally, one can use the --grid flag to enable grid lines in the
generated figures.

Implementation:
plot_strings.py traverses the JSON tree until a 'results' array
is found and generates a separate figure for each such array.
The figure is then saved to a file in one of the available formats
(controlled with the --extension parameter).

As the tree is traversed, the recursive function tracks the metadata
about the test being run, so that each figure has a unique and
meaningful title and filename.

While plot_strings.py works with existing benchmarks, provisions
have been made to allow adding more structure and metadata to these
benchmarks. Currently, many benchmarks produce multiple timing values
for the same value of the varied parameter (typically 'length').
Mutiple data points for the same parameter usually mean that some other
parameter was varied as well, for example, if memmove's src and dst
buffers overlap or not (see bench-memmove-walk.c and
bench-memmove-walk.out).

Unfortunately, this information is not exposed in the benchmark output
file, so plot_strings.py has to resort to computing the geometric mean
of these multiple values. In the process, useful information about the
benchmark configuration is lost. Also, averaging the timings for
different alignments can hide useful characterstics of the benchmarked
ifuncs.

Testing:
plot_strings.py has been tested on all existing string microbenchmarks
which produce results in JSON format. The script was tested on both
Windows 10 and Ubuntu 16.04.2 LTS. It runs on both python 2 and 3
(2.7.12 and 3.5.12 tested).

Useful commands:
1. Plot timings for all ifuncs in bench-strlen.out:
$ ./plot_strings.py bench-strlen.out

2. Display help:
$ ./plot_strings.py -h

3. Plot throughput for __memset_avx512_unaligned_erms and
__memset_avx512_unaligned. Save the generated figure in pdf format to
'results/'. Use logarithmic x-axis scale, show grid lines and expose
the performance numbers:
$ ./plot_strings.py bench.out -o results/ -lgv -e pdf -p thru \
-i __memset_avx512_unaligned_erms __memset_avx512_unaligned

4. Plot relative timings for all ifuncs in bench.out with __generic_memset
as baseline. Display percentage difference threshold of +-10%:
$ ./plot_strings.py bench.out -p rel  -b __generic_memset -t 10

Discussion:
1. I would like to propose relaxing the benchout_strings.schema.json
to allow specifying either a 'results' array with 'timings' (as before)
or a 'variants' array. See below example:

{
 "timing_type": "hp_timing",
 "functions": {
  "memcpy": {
   "bench-variant": "default",
   "ifuncs": ["generic_memcpy", "__memcpy_thunderx"],
   "variants": [
    {
     "name": "powers of 2",
     "variants": [
      {
       "name": "both aligned",
       "results": [
        {
         "length": 1,
         "align1": 0,
         "align2": 0,
         "timings": [x, y]
        },
        {
         "length": 2,
         "align1": 0,
         "align2": 0,
         "timings": [x, y]
        },
...
        {
         "length": 65536,
         "align1": 0,
         "align2": 0,
         "timings": [x, y]
        }]
      },
      {
       "name": "dst misaligned",
       "results": [
        {
         "length": 1,
         "align1": 0,
         "align2": 0,
         "timings": [x, y]
        },
        {
         "length": 2,
         "align1": 0,
         "align2": 1,
         "timings": [x, y]
        },
...

'variants' array consists of objects such that each object has a 'name'
attribute to describe the configuration of a particular test in the
benchmark. This can be a description, for example, of how the parameter
was varied or what was the buffer alignment tested. The 'name' attribute
is then followed by another 'variants' array or a 'results' array.

The nesting of variants allows arbitrary grouping of benchmark timings,
while allowing description of these groups. Using recusion, it is
possible to proceduraly create titles and filenames for the figures being
generated.
Diffstat (limited to 'hesiod')
0 files changed, 0 insertions, 0 deletions