diff options
author | Ulrich Drepper <drepper@redhat.com> | 2004-12-22 20:10:10 +0000 |
---|---|---|
committer | Ulrich Drepper <drepper@redhat.com> | 2004-12-22 20:10:10 +0000 |
commit | a334319f6530564d22e775935d9c91663623a1b4 (patch) | |
tree | b5877475619e4c938e98757d518bb1e9cbead751 /README.libm | |
parent | 0ecb606cb6cf65de1d9fc8a919bceb4be476c602 (diff) | |
download | glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.gz glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.xz glibc-a334319f6530564d22e775935d9c91663623a1b4.zip |
(CFLAGS-tst-align.c): Add -mpreferred-stack-boundary=4.
Diffstat (limited to 'README.libm')
-rw-r--r-- | README.libm | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/README.libm b/README.libm index f058cf846c..33ace8c065 100644 --- a/README.libm +++ b/README.libm @@ -486,7 +486,7 @@ sqrt * Bit by bit method using integer arithmetic. (Slow, but portable) * 1. Normalization * Scale x to y in [1,4) with even powers of 2: - * find an integer k such that 1 <= (y=x*2^(-2k)) < 4, then + * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then * sqrt(x) = 2^k * sqrt(y) * 2. Bit by bit computation * Let q = sqrt(y) truncated to i bit after binary point (q = 1), |