Frequently Asked Questions about the GNU C Library
This document tries to answer questions a user might have when installing
and using glibc. Please make sure you read this before sending questions or
bug reports to the maintainers.
The GNU C library is very complex. The installation process has not been
completely automated; there are too many variables. You can do substantial
damage to your system by installing the library incorrectly. Make sure you
understand what you are undertaking before you begin.
If you have any questions you think should be answered in this document,
please let me know.
--drepper@cygnus.com
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
1. Compiling glibc
1.1. What systems does the GNU C Library run on?
1.2. What compiler do I need to build GNU libc?
1.3. When I try to compile glibc I get only error messages.
What's wrong?
1.4. Do I need a special linker or archiver?
1.5. Which compiler should I use for powerpc?
1.6. Do I need some more things to compile GNU C Library?
1.7. What version of the Linux kernel headers should be used?
1.8. The compiler hangs while building iconvdata modules. What's
wrong?
1.9. When I run `nm -u libc.so' on the produced library I still
find unresolved symbols. Can this be ok?
1.10. What are these `add-ons'?
1.11. My XXX kernel emulates a floating-point coprocessor for me.
Should I enable --with-fp?
1.12. When compiling GNU libc I get lots of errors saying functions
in glibc are duplicated in libgcc.
1.13. Why do I get messages about missing thread functions when I use
librt? I don't even use threads.
1.14. What's the problem with configure --enable-omitfp?
2. Installation and configuration issues
2.1. Can I replace the libc on my Linux system with GNU libc?
2.2. How do I configure GNU libc so that the essential libraries
like libc.so go into /lib and the other into /usr/lib?
2.3. How should I avoid damaging my system when I install GNU libc?
2.4. Do I need to use GNU CC to compile programs that will use the
GNU C Library?
2.5. When linking with the new libc I get unresolved symbols
`crypt' and `setkey'. Why aren't these functions in the
libc anymore?
2.6. When I use GNU libc on my Linux system by linking against
the libc.so which comes with glibc all I get is a core dump.
2.7. Looking through the shared libc file I haven't found the
functions `stat', `lstat', `fstat', and `mknod' and while
linking on my Linux system I get error messages. How is
this supposed to work?
2.8. How can I compile gcc 2.7.2.1 from the gcc source code using
glibc 2.x?
2.9. The `gencat' utility cannot process the catalog sources which
were used on my Linux libc5 based system. Why?
2.10. Programs using libc have their messages translated, but other
behavior is not localized (e.g. collating order); why?
2.11. I have set up /etc/nis.conf, and the Linux libc 5 with NYS
works great. But the glibc NIS+ doesn't seem to work.
2.12. I have killed ypbind to stop using NIS, but glibc
continues using NIS.
2.13. Under Linux/Alpha, I always get "do_ypcall: clnt_call:
RPC: Unable to receive; errno = Connection refused" when using NIS.
2.14. After installing glibc name resolving doesn't work properly.
2.15. I have /usr/include/net and /usr/include/scsi as symlinks
into my Linux source tree. Is that wrong?
2.16. Programs like `logname', `top', `uptime' `users', `w' and
`who', show incorrect information about the (number of)
users on my system. Why?
2.17. After upgrading to glibc 2.1 with symbol versioning I get
errors about undefined symbols. What went wrong?
2.18. When I start the program XXX after upgrading the library
I get
XXX: Symbol `_sys_errlist' has different size in shared
object, consider re-linking
Why? What should I do?
2.19. What do I need for C++ development?
2.20. Even statically linked programs need some shared libraries
which is not acceptable for me. What can I do?
3. Source and binary incompatibilities, and what to do about them
3.1. I expect GNU libc to be 100% source code compatible with
the old Linux based GNU libc. Why isn't it like this?
3.2. Why does getlogin() always return NULL on my Linux box?
3.3. Where are the DST_* constants found in <sys/time.h> on many
systems?
3.4. The prototypes for `connect', `accept', `getsockopt',
`setsockopt', `getsockname', `getpeername', `send',
`sendto', and `recvfrom' are different in GNU libc from
any other system I saw. This is a bug, isn't it?
3.5. On Linux I've got problems with the declarations in Linux
kernel headers.
3.6. I don't include any kernel headers myself but the compiler
still complains about redeclarations of types in the kernel
headers.
3.7. Why don't signals interrupt system calls anymore?
3.8. I've got errors compiling code that uses certain string
functions. Why?
3.9. I get compiler messages "Initializer element not constant" with
stdin/stdout/stderr. Why?
3.10. I can't compile with gcc -traditional (or
-traditional-cpp). Why?
3.11. I get some errors with `gcc -ansi'. Isn't glibc ANSI compatible?
3.12. I can't access some functions anymore. nm shows that they do
exist but linking fails nevertheless.
4. Miscellaneous
4.1. After I changed configure.in I get `Autoconf version X.Y.
or higher is required for this script'. What can I do?
4.2. When I try to compile code which uses IPv6 headers and
definitions on my Linux 2.x.y system I am in trouble.
Nothing seems to work.
4.3. When I set the timezone by setting the TZ environment variable
to EST5EDT things go wrong since glibc computes the wrong time
from this information.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
1. Compiling glibc
1.1. What systems does the GNU C Library run on?
{UD} This is difficult to answer. The file `README' lists the architectures
GNU libc was known to run on *at some time*. This does not mean that it
still can be compiled and run on them now.
The systems glibc is known to work on as of this release, and most probably
in the future, are:
*-*-gnu GNU Hurd
i[3456]86-*-linux-gnu Linux-2.x on Intel
m68k-*-linux-gnu Linux-2.x on Motorola 680x0
alpha-*-linux-gnu Linux-2.x on DEC Alpha
powerpc-*-linux-gnu Linux and MkLinux on PowerPC systems
sparc-*-linux-gnu Linux-2.x on SPARC
sparc64-*-linux-gnu Linux-2.x on UltraSPARC
arm-*-none ARM standalone systems
arm-*-linuxaout Linux-2.x on ARM using a.out binaries
Ports to other Linux platforms are in development, and may in fact work
already, but no one has sent us success reports for them. Currently no
ports to other operating systems are underway, although a few people have
expressed interest.
If you have a system not listed above (or in the `README' file) and you are
really interested in porting it, contact
<bug-glibc@gnu.org>
1.2. What compiler do I need to build GNU libc?
{UD} You must use GNU CC to compile GNU libc. A lot of extensions of GNU CC
are used to increase portability and speed.
GNU CC is found, like all other GNU packages, on
ftp://ftp.gnu.org/pub/gnu
and the many mirror sites. ftp.gnu.org is always overloaded, so try to find
a local mirror first.
You always should try to use the latest official release. Older versions
may not have all the features GNU libc requires. The current releases of
egcs (1.0.2) and GNU CC (2.8.1) should work with the GNU C library (for
powerpc see question question 1.5).
1.3. When I try to compile glibc I get only error messages.
What's wrong?
{UD} You definitely need GNU make to translate GNU libc. No other make
program has the needed functionality.
We recommend version GNU make version 3.75. Versions 3.76 and 3.76.1 have
bugs which appear when building big projects like GNU libc. Versions before
3.74 have bugs and/or are missing features.
1.4. Do I need a special linker or archiver?
{UD} You may be able to use your system linker, but GNU libc works best with
GNU binutils.
On systems where the native linker does not support weak symbols you will
not get a fully ISO C compliant C library. Generally speaking you should
use the GNU binutils if they provide at least the same functionality as your
system's tools.
Always get the newest release of GNU binutils available. Older releases are
known to have bugs that prevent a successful compilation.
{ZW} As of release 2.1 a linker supporting symbol versions is required. For
Linux, get binutils-2.8.1.0.23 or later. Other systems may have native
linker support, but it's moot right now, because glibc has not been ported
to them.
1.5. Which compiler should I use for powerpc?
{GK} You want to use egcs 1.0.1 or later (together with the right versions
of all the other tools, of course).
In fact, egcs 1.0.1 has a serious bug that prevents a clean make, relating
to switch statement folding. It also causes the resulting shared libraries
to use more memory than they should. There is a patch at:
<http://discus.anu.edu.au/~geoffk/egcs-1.0.1-geoffk.diff>
Later versions of egcs may fix these problems.
1.6. Do I need some more things to compile GNU C Library?
{UD} Yes, there are some more :-).
* GNU gettext. This package contains the tools needed to construct
`message catalog' files containing translated versions of system
messages. See ftp://ftp.gnu.org/pub/gnu or better any mirror
site. (We distribute compiled message catalogs, but they may not be
updated in patches.)
* Some files depend on special tools. E.g., files ending in .gperf
need a `gperf' program. The GNU version (part of libg++) is known
to work while some vendor versions do not.
You should not need these tools unless you change the source files.
* Some scripts need perl5 - but at the moment those scripts are not
vital for building and installing GNU libc (some data files will not
be created).
* When compiling for Linux, the header files of the Linux kernel must
be available to the compiler as <linux/*.h> and <asm/*.h>.
* lots of disk space (~170MB for i?86-linux; more for RISC platforms,
as much as 400MB).
* plenty of time. Compiling just the shared and static libraries for
i?86-linux takes approximately 1h on an i586@133, or 2.5h on
i486@66, or 4.5h on i486@33. Multiply this by 1.5 or 2.0 if you
build profiling and/or the highly optimized version as well. For
Hurd systems times are much higher.
You should avoid compiling in a NFS mounted filesystem. This is
very slow.
James Troup <J.J.Troup@comp.brad.ac.uk> reports a compile time of
45h34m for a full build (shared, static, and profiled) on Atari
Falcon (Motorola 68030 @ 16 Mhz, 14 Mb memory) and Jan Barte
<yann@plato.uni-paderborn.de> reports 22h48m on Atari TT030
(Motorola 68030 @ 32 Mhz, 34 Mb memory)
If you have some more measurements let me know.
1.7. What version of the Linux kernel headers should be used?
{AJ,UD} The headers from the most recent Linux kernel should be used. The
headers used while compiling the GNU C library and the kernel binary used
when using the library do not need to match. The GNU C library runs without
problems on kernels that are older than the kernel headers used. The other
way round (compiling the GNU C library with old kernel headers and running
on a recent kernel) does not necessarily work. For example you can't use
new kernel features when using old kernel headers for compiling the GNU C
library.
1.8. The compiler hangs while building iconvdata modules. What's
wrong?
{ZW} This is a problem with all current releases of GCC. Initialization of
large static arrays is very slow. The compiler will eventually finish; give
it time.
The problem will be fixed in egcs 1.1 but probably not before then.
1.9. When I run `nm -u libc.so' on the produced library I still
find unresolved symbols. Can this be ok?
{UD} Yes, this is ok. There can be several kinds of unresolved symbols:
* magic symbols automatically generated by the linker. These have names
like __start_* and __stop_*
* symbols starting with _dl_* come from the dynamic linker
* weak symbols, which need not be resolved at all (fabs for example)
Generally, you should make sure you find a real program which produces
errors while linking before deciding there is a problem.
1.10. What are these `add-ons'?
{UD} To avoid complications with export rules or external source code some
optional parts of the libc are distributed as separate packages (e.g., the
crypt package, see question 2.5).
To use these packages as part of GNU libc, just unpack the tarfiles in the
libc source directory and tell the configuration script about them using the
--enable-add-ons option. If you give just --enable-add-ons configure tries
to find all the add-on packages in your source tree. This may not work. If
it doesn't, or if you want to select only a subset of the add-ons, give a
comma-separated list of the add-ons to enable:
configure --enable-add-ons=crypt,linuxthreads
for example.
Add-ons can add features (including entirely new shared libraries), override
files, provide support for additional architectures, and just about anything
else. The existing makefiles do most of the work; only some few stub rules
must be written to get everything running.
1.11. My XXX kernel emulates a floating-point coprocessor for me.
Should I enable --with-fp?
{ZW} An emulated FPU is just as good as a real one, as far as the C library
is concerned. You only need to say --without-fp if your machine has no way
to execute floating-point instructions.
People who are interested in squeezing the last drop of performance
out of their machine may wish to avoid the trap overhead, but this is
far more trouble than it's worth: you then have to compile
*everything* this way, including the compiler's internal libraries
(libgcc.a for GNU C), because the calling conventions change.
1.12. When compiling GNU libc I get lots of errors saying functions
in glibc are duplicated in libgcc.
{EY} This is *exactly* the same problem that I was having. The problem was
due to the fact that configure didn't correctly detect that the linker flag
--no-whole-archive was supported in my linker. In my case it was because I
had run ./configure with bogus CFLAGS, and the test failed.
One thing that is particularly annoying about this problem is that once this
is misdetected, running configure again won't fix it unless you first delete
config.cache.
{UD} Starting with glibc-2.0.3 there should be a better test to avoid some
problems of this kind. The setting of CFLAGS is checked at the very
beginning and if it is not usable `configure' will bark.
1.13. Why do I get messages about missing thread functions when I use
librt? I don't even use threads.
{UD} In this case you probably mixed up your installation. librt uses
threads internally and has implicit references to the thread library.
Normally these references are satisfied automatically but if the thread
library is not in the expected place you must tell the linker where it is.
When using GNU ld it works like this:
gcc -o foo foo.c -Wl,-rpath-link=/some/other/dir -lrt
The `/some/other/dir' should contain the thread library. `ld' will use the
given path to find the implicitly referenced library while not disturbing
any other link path.
1.14. What's the problem with configure --enable-omitfp?
{AJ} When --enable-omitfp is set the libraries are built without frame
pointers. Some compilers produce buggy code for this model and therefore we
don't advise using it at the moment.
If you use --enable-omitfp, you're on your own. If you encounter problems
with a library that was build this way, we advise you to rebuild the library
without --enable-omitfp. If the problem vanishes consider tracking the
problem down and report it as compiler failure.
Since a library build with --enable-omitfp is undebuggable on most systems,
debuggable libraries are also built - you can use it by appending "_g" to
the library names.
The compilation of these extra libraries and the compiler optimizations slow
down the build process and need more disk space.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Installation and configuration issues
2.1. Can I replace the libc on my Linux system with GNU libc?
{UD} You cannot replace any existing libc for Linux with GNU libc. It is
binary incompatible and therefore has a different major version. You can,
however, install it alongside your existing libc.
For Linux there are three major libc versions:
libc-4 a.out libc
libc-5 original ELF libc
libc-6 GNU libc
You can have any combination of these three installed. For more information
consult documentation for shared library handling. The Makefiles of GNU
libc will automatically generate the needed symbolic links which the linker
will use.
2.2. How do I configure GNU libc so that the essential libraries
like libc.so go into /lib and the other into /usr/lib?
{UD,AJ} Like all other GNU packages GNU libc is designed to use a base
directory and install all files relative to this. The default is
/usr/local, because this is safe (it will not damage the system if installed
there). If you wish to install GNU libc as the primary C library on your
system, set the base directory to /usr (i.e. run configure --prefix=/usr
<other_options>). Note that this can damage your system; see question 2.3 for
details.
Some systems like Linux have a filesystem standard which makes a difference
between essential libraries and others. Essential libraries are placed in
/lib because this directory is required to be located on the same disk
partition as /. The /usr subtree might be found on another
partition/disk. If you configure for Linux with --prefix=/usr, then this
will be done automatically.
To install the essential libraries which come with GNU libc in /lib on
systems other than Linux one must explicitly request it. Autoconf has no
option for this so you have to use a `configparms' file (see the `INSTALL'
file for details). It should contain:
slibdir=/lib
sysconfdir=/etc
The first line specifies the directory for the essential libraries, the
second line the directory for system configuration files.
2.3. How should I avoid damaging my system when I install GNU libc?
{ZW} If you wish to be cautious, do not configure with --prefix=/usr. If
you don't specify a prefix, glibc will be installed in /usr/local, where it
will probably not break anything. (If you wish to be certain, set the
prefix to something like /usr/local/glibc2 which is not used for anything.)
The dangers when installing glibc in /usr are twofold:
* glibc will overwrite the headers in /usr/include. Other C libraries
install a different but overlapping set of headers there, so the
effect will probably be that you can't compile anything. You need to
rename /usr/include out of the way first. (Do not throw it away; you
will then lose the ability to compile programs against your old libc.)
* None of your old libraries, static or shared, can be used with a
different C library major version. For shared libraries this is not a
problem, because the filenames are different and the dynamic linker
will enforce the restriction. But static libraries have no version
information. You have to evacuate all the static libraries in
/usr/lib to a safe location.
The situation is rather similar to the move from a.out to ELF which
long-time Linux users will remember.
2.4. Do I need to use GNU CC to compile programs that will use the
GNU C Library?
{ZW} In theory, no; the linker does not care, and the headers are supposed
to check for GNU CC before using its extensions to the C language.
However, there are currently no ports of glibc to systems where another
compiler is the default, so no one has tested the headers extensively
against another compiler. You may therefore encounter difficulties. If you
do, please report them as bugs.
Also, in several places GNU extensions provide large benefits in code
quality. For example, the library has hand-optimized, inline assembly
versions of some string functions. These can only be used with GCC. See
question 3.8 for details.
2.5. When linking with the new libc I get unresolved symbols
`crypt' and `setkey'. Why aren't these functions in the
libc anymore?
{UD} The US places restrictions on exporting cryptographic programs and
source code. Until this law gets abolished we cannot ship the cryptographic
functions together with glibc.
The functions are available, as an add-on (see question 1.10). People in the US
may get it from the same place they got GNU libc from. People outside the
US should get the code from ftp://ftp.ifi.uio.no/pub/gnu, or another archive
site outside the USA. The README explains how to install the sources.
If you already have the crypt code on your system the reason for the failure
is probably that you did not link with -lcrypt. The crypto functions are in
a separate library to make it possible to export GNU libc binaries from the
US.
2.6. When I use GNU libc on my Linux system by linking against
the libc.so which comes with glibc all I get is a core dump.
{UD} On Linux, gcc sets the dynamic linker to /lib/ld-linux.so.1 unless the
user specifies a -dynamic-linker argument. This is the name of the libc5
dynamic linker, which does not work with glibc.
For casual use of GNU libc you can just specify
-dynamic-linker=/lib/ld-linux.so.2
which is the glibc dynamic linker, on Linux systems. On other systems the
name is /lib/ld.so.1.
To change your environment to use GNU libc for compiling you need to change
the `specs' file of your gcc. This file is normally found at
/usr/lib/gcc-lib/<arch>/<version>/specs
In this file you have to change a few things:
- change `ld-linux.so.1' to `ld-linux.so.2'
- remove all expression `%{...:-lgmon}'; there is no libgmon in glibc
- fix a minor bug by changing %{pipe:-} to %|
Here is what the gcc-2.7.2 specs file should look like when GNU libc is
installed at /usr:
-----------------------------------------------------------------------
*asm:
%{V} %{v:%{!V:-V}} %{Qy:} %{!Qn:-Qy} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*}
*asm_final:
%|
*cpp:
%{fPIC:-D__PIC__ -D__pic__} %{fpic:-D__PIC__ -D__pic__} %{!m386:-D__i486__} %{posix:-D_POSIX_SOURCE} %{pthread:-D_REENTRANT}
*cc1:
%{profile:-p}
*cc1plus:
*endfile:
%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s
*link:
-m elf_i386 %{shared:-shared} %{!shared: %{!ibcs: %{!static: %{rdynamic:-export-dynamic} %{!dynamic-linker:-dynamic-linker /lib/ld-linux.so.2}} %{static:-static}}}
*lib:
%{!shared: %{pthread:-lpthread} %{profile:-lc_p} %{!profile: -lc}}
*libgcc:
-lgcc
*startfile:
%{!shared: %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} %{!p:%{profile:gcrt1.o%s} %{!profile:crt1.o%s}}}} crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}
*switches_need_spaces:
*signed_char:
%{funsigned-char:-D__CHAR_UNSIGNED__}
*predefines:
-D__ELF__ -Dunix -Di386 -Dlinux -Asystem(unix) -Asystem(posix) -Acpu(i386) -Amachine(i386)
*cross_compile:
0
*multilib:
. ;
-----------------------------------------------------------------------
Things get a bit more complicated if you have GNU libc installed in some
other place than /usr, i.e., if you do not want to use it instead of the old
libc. In this case the needed startup files and libraries are not found in
the regular places. So the specs file must tell the compiler and linker
exactly what to use.
Version 2.7.2.3 does and future versions of GCC will automatically
provide the correct specs.
2.7. Looking through the shared libc file I haven't found the
functions `stat', `lstat', `fstat', and `mknod' and while
linking on my Linux system I get error messages. How is
this supposed to work?
{RM} Believe it or not, stat and lstat (and fstat, and mknod) are supposed
to be undefined references in libc.so.6! Your problem is probably a missing
or incorrect /usr/lib/libc.so file; note that this is a small text file now,
not a symlink to libc.so.6. It should look something like this:
GROUP ( libc.so.6 libc_nonshared.a )
2.8. How can I compile gcc 2.7.2.1 from the gcc source code using
glibc 2.x?
{AJ} There's only correct support for glibc 2.0.x in gcc 2.7.2.3 or later.
But you should get at least gcc 2.8.1 or egcs 1.0.2 (or later versions)
instead.
2.9. The `gencat' utility cannot process the catalog sources which
were used on my Linux libc5 based system. Why?
{UD} The `gencat' utility provided with glibc complies to the XPG standard.
The older Linux version did not obey the standard, so they are not
compatible.
To ease the transition from the Linux version some of the non-standard
features are also present in the `gencat' program of GNU libc. This mainly
includes the use of symbols for the message number and the automatic
generation of header files which contain the needed #defines to map the
symbols to integers.
Here is a simple SED script to convert at least some Linux specific catalog
files to the XPG4 form:
-----------------------------------------------------------------------
# Change catalog source in Linux specific format to standard XPG format.
# Ulrich Drepper <drepper@cygnus.com>, 1996.
#
/^\$ #/ {
h
s/\$ #\([^ ]*\).*/\1/
x
s/\$ #[^ ]* *\(.*\)/\$ \1/
}
/^# / {
s/^# \(.*\)/\1/
G
s/\(.*\)\n\(.*\)/\2 \1/
}
-----------------------------------------------------------------------
2.10. Programs using libc have their messages translated, but other
behavior is not localized (e.g. collating order); why?
{ZW} Translated messages are automatically installed, but the locale
database that controls other behaviors is not. You need to run localedef to
install this database, after you have run `make install'. For example, to
set up the French Canadian locale, simply issue the command
localedef -i fr_CA -f ISO-8859-1 fr_CA
Please see localedata/README in the source tree for further details.
2.11. I have set up /etc/nis.conf, and the Linux libc 5 with NYS
works great. But the glibc NIS+ doesn't seem to work.
{TK} The glibc NIS+ implementation uses a /var/nis/NIS_COLD_START file for
storing information about the NIS+ server and their public keys, because the
nis.conf file does not contain all the necessary information. You have to
copy a NIS_COLD_START file from a Solaris client (the NIS_COLD_START file is
byte order independent) or generate it with nisinit from the nis-tools
package; available at
http://www-vt.uni-paderborn.de/~kukuk/linux/nisplus.html
2.12. I have killed ypbind to stop using NIS, but glibc
continues using NIS.
{TK} For faster NIS lookups, glibc uses the /var/yp/binding/ files from
ypbind. ypbind 3.3 and older versions don't always remove these files, so
glibc will continue to use them. Other BSD versions seem to work correctly.
Until ypbind 3.4 is released, you can find a patch at
ftp://ftp.kernel.org/pub/linux/utils/net/NIS/ypbind-3.3-glibc3.diff.
2.13. Under Linux/Alpha, I always get "do_ypcall: clnt_call:
RPC: Unable to receive; errno = Connection refused" when using NIS.
{TK} You need a ypbind version which is 64bit clean. Some versions are not
64bit clean. A 64bit clean implementation is ypbind-mt. For ypbind 3.3,
you need the patch from ftp.kernel.org (See the previous question). I don't
know about other versions.
2.14. After installing glibc name resolving doesn't work properly.
{AJ} You probably should read the manual section describing nsswitch.conf
(just type `info libc "NSS Configuration File"'). The NSS configuration
file is usually the culprit.
2.15. I have /usr/include/net and /usr/include/scsi as symlinks
into my Linux source tree. Is that wrong?
{PB} This was necessary for libc5, but is not correct when using glibc.
Including the kernel header files directly in user programs usually does not
work (see question 3.5). glibc provides its own <net/*> and <scsi/*> header
files to replace them, and you may have to remove any symlink that you have
in place before you install glibc. However, /usr/include/asm and
/usr/include/linux should remain as they were.
2.16. Programs like `logname', `top', `uptime' `users', `w' and
`who', show incorrect information about the (number of)
users on my system. Why?
{MK} See question 3.2.
2.17. After upgrading to glibc 2.1 with symbol versioning I get
errors about undefined symbols. What went wrong?
{AJ} The problem is caused either by wrong program code or tools. In the
versioned libc a lot of symbols are now local that were global symbols in
previous versions. It seems that programs linked against older versions
often accidentally used libc global variables -- something that should not
happen.
The only way to fix this is to recompile your program. Sorry, that's the
price you might have to pay once for quite a number of advantages with
symbol versioning.
2.18. When I start the program XXX after upgrading the library
I get
XXX: Symbol `_sys_errlist' has different size in shared
object, consider re-linking
Why? What should I do?
{UD} As the message says, relink the binary. The problem is that a few
symbols from the library can change in size and there is no way to avoid
this. _sys_errlist is a good example. Occasionally there are new error
numbers added to the kernel and this must be reflected at user level,
breaking programs that refer to them directly.
Such symbols should normally not be used at all. There are mechanisms to
avoid using them. In the case of _sys_errlist, there is the strerror()
function which should _always_ be used instead. So the correct fix is to
rewrite that part of the application.
In some situations (especially when testing a new library release) it might
be possible that a symbol changed size when that should not have happened.
So in case of doubt report such a warning message as a problem.
2.19. What do I need for C++ development?
{HJ,AJ} You need either egcs 1.0.2 or gcc-2.8.1 with libstdc++ 2.8.1 (or
more recent versions). libg++ 2.7.2 (and the Linux Versions 2.7.2.x) doesn't
work very well with the GNU C library due to vtable thunks. If you're
upgrading from glibc 2.0.x to 2.1 you have to recompile libstdc++ since the
library compiled for 2.0 is not compatible due to the new Large File Support
(LFS) in version 2.1.
2.20. Even statically linked programs need some shared libraries
which is not acceptable for me. What can I do?
{AJ} NSS (for details just type `info libc "Name Service Switch"') won't
work properly without shared libraries. NSS allows using different services
(e.g. NIS, files, db, hesiod) by just changing one configuration file
(/etc/nsswitch.conf) without relinking any programs. The only disadvantage
is that now static libraries need to access shared libraries. This is
handled transparently by the GNU C library.
A solution is to configure glibc with --enable-static-nss. In this case you
can create a static binary that will use only the services dns and files
(change /etc/nsswitch.conf for this). You need to link explicitly against
all these services. For example:
gcc -static test-netdb.c -o test-netdb.c \
-lc -lnss_files -lnss_dns -lresolv
The problem with this approach is that you've got to link every static
program that uses NSS routines with all those libraries.
{UD} In fact, one cannot say anymore that a libc compiled with this
option is using NSS. There is no switch anymore. Therefore it is
*highly* recommended *not* to use --enable-static-nss since this makes
the behaviour of the programs on the system inconsistent.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Source and binary incompatibilities, and what to do about them
3.1. I expect GNU libc to be 100% source code compatible with
the old Linux based GNU libc. Why isn't it like this?
{DMT,UD} Not every extension in Linux libc's history was well thought-out.
In fact it had a lot of problems with standards compliance and with
cleanliness. With the introduction of a new version number these errors can
now be corrected. Here is a list of the known source code
incompatibilities:
* _GNU_SOURCE: glibc does not make the GNU extensions available
automatically. If a program depends on GNU extensions or some
other non-standard functionality, it is necessary to compile it
with the C compiler option -D_GNU_SOURCE, or better, to put
`#define _GNU_SOURCE' at the beginning of your source files, before
any C library header files are included. This difference normally
manifests itself in the form of missing prototypes and/or data type
definitions. Thus, if you get such errors, the first thing you
should do is try defining _GNU_SOURCE and see if that makes the
problem go away.
For more information consult the file `NOTES' in the GNU C library
sources.
* reboot(): GNU libc sanitizes the interface of reboot() to be more
compatible with the interface used on other OSes. reboot() as
implemented in glibc takes just one argument. This argument
corresponds to the third argument of the Linux reboot system call.
That is, a call of the form reboot(a, b, c) needs to be changed into
reboot(c). Beside this the header <sys/reboot.h> defines the needed
constants for the argument. These RB_* constants should be used
instead of the cryptic magic numbers.
* swapon(): the interface of this function didn't change, but the
prototype is in a separate header file <sys/swap.h>. This header
file also provides the SWAP_* constants defined by <linux/swap.h>;
you should use them for the second argument to swapon().
* errno: If a program uses the variable "errno", then it _must_
include <errno.h>. The old libc often (erroneously) declared this
variable implicitly as a side-effect of including other libc header
files. glibc is careful to avoid such namespace pollution, which,
in turn, means that you really need to include the header files that
you depend on. This difference normally manifests itself in the
form of the compiler complaining about references to an undeclared
symbol "errno".
* Linux-specific syscalls: All Linux system calls now have appropriate
library wrappers and corresponding declarations in various header files.
This is because the syscall() macro that was traditionally used to
work around missing syscall wrappers are inherently non-portable and
error-prone. The following table lists all the new syscall stubs,
the header-file declaring their interface and the system call name.
syscall name: wrapper name: declaring header file:
------------- ------------- ----------------------
bdflush bdflush <sys/kdaemon.h>
syslog ksyslog_ctl <sys/klog.h>
* lpd: Older versions of lpd depend on a routine called _validuser().
The library does not provide this function, but instead provides
__ivaliduser() which has a slightly different interface. Simply
upgrading to a newer lpd should fix this problem (e.g., the 4.4BSD
lpd is known to be working).
* resolver functions/BIND: like on many other systems the functions of
the resolver library are not included in libc itself. There is a
separate library libresolv. If you get undefined symbol errors for
symbols starting with `res_*' simply add -lresolv to your linker
command line.
* the `signal' function's behavior corresponds to the BSD semantic and
not the SysV semantic as it was in libc-5. The interface on all GNU
systems shall be the same and BSD is the semantic of choice. To use
the SysV behavior simply use `sysv_signal', or define _XOPEN_SOURCE.
See question 3.7 for details.
3.2. Why does getlogin() always return NULL on my Linux box?
{UD} The GNU C library has a format for the UTMP and WTMP file which differs
from what your system currently has. It was extended to fulfill the needs
of the next years when IPv6 is introduced. The record size is different and
some fields have different positions. The files written by functions from
the one library cannot be read by functions from the other library. Sorry,
but this is what a major release is for. It's better to have a cut now than
having no means to support the new techniques later.
{MK} There is however a (partial) solution for this problem. Please take a
look at the file `login/README.utmpd'.
3.3. Where are the DST_* constants found in <sys/time.h> on many
systems?
{UD} These constants come from the old BSD days and are not used anymore
(libc5 does not actually implement the handling although the constants are
defined).
Instead GNU libc contains zone database support and compatibility code for
POSIX TZ environment variable handling.
3.4. The prototypes for `connect', `accept', `getsockopt',
`setsockopt', `getsockname', `getpeername', `send',
`sendto', and `recvfrom' are different in GNU libc from
any other system I saw. This is a bug, isn't it?
{UD} No, this is no bug. This version of GNU libc already follows the new
Single Unix specifications (and I think the POSIX.1g draft which adopted the
solution). The type for a parameter describing a size is now `socklen_t', a
new type.
3.5. On Linux I've got problems with the declarations in Linux
kernel headers.
{UD,AJ} On Linux, the use of kernel headers is reduced to the minimum. This
gives Linus the ability to change the headers more freely. Also, user
programs are now insulated from changes in the size of kernel data
structures.
For example, the sigset_t type is 32 or 64 bits wide in the kernel. In
glibc it is 1024 bits wide. This guarantees that when the kernel gets a
bigger sigset_t (for POSIX.1e realtime support, say) user programs will not
have to be recompiled. Consult the header files for more information about
the changes.
Therefore you shouldn't include Linux kernel header files directly if glibc
has defined a replacement. Otherwise you might get undefined results because
of type conflicts.
3.6. I don't include any kernel headers myself but the compiler
still complains about redeclarations of types in the kernel
headers.
{UD} The kernel headers before Linux 2.1.61 and 2.0.32 don't work correctly
with glibc. Compiling C programs is possible in most cases but C++ programs
have (due to the change of the name lookups for `struct's) problems. One
prominent example is `struct fd_set'.
There might be some problems left but 2.1.61/2.0.32 fix most of the known
ones. See the BUGS file for other known problems.
3.7. Why don't signals interrupt system calls anymore?
{ZW} By default GNU libc uses the BSD semantics for signal(), unlike Linux
libc 5 which used System V semantics. This is partially for compatibility
with other systems and partially because the BSD semantics tend to make
programming with signals easier.
There are three differences:
* BSD-style signals that occur in the middle of a system call do not
affect the system call; System V signals cause the system call to
fail and set errno to EINTR.
* BSD signal handlers remain installed once triggered. System V signal
handlers work only once, so one must reinstall them each time.
* A BSD signal is blocked during the execution of its handler. In other
words, a handler for SIGCHLD (for example) does not need to worry about
being interrupted by another SIGCHLD. It may, however, be interrupted
by other signals.
There is general consensus that for `casual' programming with signals, the
BSD semantics are preferable. You don't need to worry about system calls
returning EINTR, and you don't need to worry about the race conditions
associated with one-shot signal handlers.
If you are porting an old program that relies on the old semantics, you can
quickly fix the problem by changing signal() to sysv_signal() throughout.
Alternatively, define _XOPEN_SOURCE before including <signal.h>.
For new programs, the sigaction() function allows you to specify precisely
how you want your signals to behave. All three differences listed above are
individually switchable on a per-signal basis with this function.
If all you want is for one specific signal to cause system calls to fail and
return EINTR (for example, to implement a timeout) you can do this with
siginterrupt().
3.8. I've got errors compiling code that uses certain string
functions. Why?
{AJ} glibc 2.1 has special string functions that are faster than the normal
library functions. Some of the functions are implemented as inline functions
and others as macros.
The optimized string functions are only used when compiling with
optimizations (-O1 or higher). The behavior can be changed with two feature
macros:
* __NO_STRING_INLINES: Don't do any string optimizations.
* __USE_STRING_INLINES: Use assembly language inline functions (might
increase code size dramatically).
Since some of these string functions are now additionally defined as macros,
code like "char *strncpy();" doesn't work anymore (and is unnecessary, since
<string.h> has the necessary declarations). Either change your code or
define __NO_STRING_INLINES.
{UD} Another problem in this area is that gcc still has problems on machines
with very few registers (e.g., ix86). The inline assembler code can require
almost all the registers and the register allocator cannot always handle
this situation.
One can disable the string optimizations selectively. Instead of writing
cp = strcpy (foo, "lkj");
one can write
cp = (strcpy) (foo, "lkj");
This disables the optimization for that specific call.
3.9. I get compiler messages "Initializer element not constant" with
stdin/stdout/stderr. Why?
{RM,AJ} Constructs like:
static FILE *InPtr = stdin;
lead to this message. This is correct behaviour with glibc since stdin is
not a constant expression. Please note that a strict reading of ISO C does
not allow above constructs.
One of the advantages of this is that you can assign to stdin, stdout, and
stderr just like any other global variable (e.g. `stdout = my_stream;'),
which can be very useful with custom streams that you can write with libio
(but beware this is not necessarily portable). The reason to implement it
this way were versioning problems with the size of the FILE structure.
3.10. I can't compile with gcc -traditional (or
-traditional-cpp). Why?
{AJ} glibc2 does break -traditional and -traditonal-cpp - and will continue
to do so. For example constructs of the form:
enum {foo
#define foo foo
}
are useful for debugging purposes (you can use foo with your debugger that's
why we need the enum) and for compatibility (other systems use defines and
check with #ifdef).
3.11. I get some errors with `gcc -ansi'. Isn't glibc ANSI compatible?
{AJ} The GNU C library is compatible with the ANSI/ISO C standard. If
you're using `gcc -ansi', the glibc includes which are specified in the
standard follow the standard. The ANSI/ISO C standard defines what has to be
in the include files - and also states that nothing else should be in the
include files (btw. you can still enable additional standards with feature
flags).
The GNU C library is conforming to ANSI/ISO C - if and only if you're only
using the headers and library functions defined in the standard.
3.12. I can't access some functions anymore. nm shows that they do
exist but linking fails nevertheless.
{AJ} With the introduction of versioning in glibc 2.1 it is possible to
export only those identifiers (functions, variables) that are really needed
by application programs and by other parts of glibc. This way a lot of
internal interfaces are now hidden. nm will still show those identifiers
but marking them as internal. ISO C states that identifiers beginning with
an underscore are internal to the libc. An application program normally
shouldn't use those internal interfaces (there are exceptions,
e.g. __ivaliduser). If a program uses these interfaces, it's broken. These
internal interfaces might change between glibc releases or dropped
completely.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Miscellaneous
4.1. After I changed configure.in I get `Autoconf version X.Y.
or higher is required for this script'. What can I do?
{UD} You have to get the specified autoconf version (or a later one)
from your favorite mirror of ftp.gnu.org.
4.2. When I try to compile code which uses IPv6 headers and
definitions on my Linux 2.x.y system I am in trouble.
Nothing seems to work.
{UD} The problem is that IPv6 development still has not reached a point
where the headers are stable. There are still lots of incompatible changes
made and the libc headers have to follow.
Also, make sure you have a suitably recent kernel. As of the 970401
snapshot, according to Philip Blundell <Philip.Blundell@pobox.com>, the
required kernel version is at least 2.1.30.
4.3. When I set the timezone by setting the TZ environment variable
to EST5EDT things go wrong since glibc computes the wrong time
from this information.
{UD} The problem is that people still use the braindamaged POSIX method to
select the timezone using the TZ environment variable with a format EST5EDT
or whatever. People, read the POSIX standard, the implemented behaviour is
correct! What you see is in fact the result of the decisions made while
POSIX.1 was created. We've only implemented the handling of TZ this way to
be POSIX compliant. It is not really meant to be used.
The alternative approach to handle timezones which is implemented is the
correct one to use: use the timezone database. This avoids all the problems
the POSIX method has plus it is much easier to use. Simply run the tzselect
shell script, answer the question and use the name printed in the end by
making a symlink to /usr/share/zoneinfo/NAME (NAME is the returned value
from tzselect) from the file /etc/localtime. That's all. You never again
have to worry.
So, please avoid sending bug reports about time related problems if you use
the POSIX method and you have not verified something is really broken by
reading the POSIX standards.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Answers were given by:
{UD} Ulrich Drepper, <drepper@cygnus.com>
{DMT} David Mosberger-Tang, <davidm@AZStarNet.com>
{RM} Roland McGrath, <roland@gnu.org>
{AJ} Andreas Jaeger, <aj@arthur.rhein-neckar.de>
{EY} Eric Youngdale, <eric@andante.jic.com>
{PB} Phil Blundell, <Philip.Blundell@pobox.com>
{MK} Mark Kettenis, <kettenis@phys.uva.nl>
{ZW} Zack Weinberg, <zack@rabi.phys.columbia.edu>
{TK} Thorsten Kukuk, <kukuk@vt.uni-paderborn.de>
{GK} Geoffrey Keating, <geoffk@ozemail.com.au>
{HJ} H.J. Lu, <hjl@gnu.org>
Local Variables:
mode:outline
outline-regexp:"\\?"
fill-column:76
End: